全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Determination of Heavy Metal Adsorption Capacity of Water Contaminated by Metallurgical Tailings Leaching Using Carbohydrates Derived from Solanum tuberosum

DOI: 10.4236/aces.2025.151003, PP. 31-46

Keywords: Heavy Metals, Adsorption, Potato Derivatives, Isotherm, Polluted Water

Full-Text   Cite this paper   Add to My Lib

Abstract:

Water contamination in areas of formal and informal polymetallic mining is a growing concern in the Peruvian highlands. At the same time, there are agricultural activities that use contaminated water from these rivers for irrigation. This could contaminate the agricultural products grown on these lands, such as potatoes. It is, therefore, necessary and a priority to determine the adsorption characteristics of these derivatives and to be able to use these natural adsorbents to decontaminate water contaminated with heavy metals.

References

[1]  Adnan, M., Xiao, B., Ali, M.U., Xiao, P., Zhao, P., Wang, H., et al. (2024) Heavy Metals Pollution from Smelting Activities: A Threat to Soil and Groundwater. Ecotoxicology and Environmental Safety, 274, Article ID: 116189.
https://doi.org/10.1016/j.ecoenv.2024.116189
[2]  Jamil Emon, F., Rohani, M.F., Sumaiya, N., Tuj Jannat, M.F., Akter, Y., Shahjahan, M., et al. (2023) Bioaccumulation and Bioremediation of Heavy Metals in Fishes—A Review. Toxics, 11, Article 510.
https://doi.org/10.3390/toxics11060510
[3]  Zhang, S., Fu, K., Gao, S., Liang, B., Lu, J. and Fu, G. (2023) Bioaccumulation of Heavy Metals in the Water, Sediment, and Organisms from the Sea Ranching Areas of Haizhou Bay in China. Water, 15, Article 2218.
https://doi.org/10.3390/w15122218
[4]  Soumini, S., Selvaraj, V., Srinivasan, S. and Sreekumar, N. (2023) Metal pollutants: an environmental hazard. In: Shah, M.P. and Vyas, B.R.M., Eds., Emerging Technologies in Applied and Environmental Microbiology, Elsevier, 97-109.
https://doi.org/10.1016/b978-0-323-99895-6.00001-0
[5]  World Health Organization (2023) Food Safety.
https://www.who.int/es/news-room/fact-sheets/detail/food-safety
[6]  Jan, A., Azam, M., Siddiqui, K., Ali, A., Choi, I. and Haq, Q. (2015) Heavy Metals and Human Health: Mechanistic Insight into Toxicity and Counter Defense System of Antioxidants. International Journal of Molecular Sciences, 16, 29592-29630.
https://doi.org/10.3390/ijms161226183
[7]  Okechukwu Ohiagu, F., Chikezie, P.C., Ahaneku, C.C. and Chikezie, C.M. (2022) Human Exposure to Heavy Metals: Toxicity Mechanisms and Health Implications. Material Science & Engineering International Journal, 6, 78-87.
https://doi.org/10.15406/mseij.2022.06.00183
[8]  Saleh, T.A., Mustaqeem, M. and Khaled, M. (2022) Water Treatment Technologies in Removing Heavy Metal Ions from Wastewater: A Review. Environmental Nanotechnology, Monitoring & Management, 17, Article ID: 100617.
https://doi.org/10.1016/j.enmm.2021.100617
[9]  Shah, D., Kamili, A., Sajjad, N., Tyub, S., Majeed, G., Hafiz, S., Noor, W., Yaqoob, S. and Maqbool, I. (2023). Phytoremediation of Pesticides and Heavy Metals in Contaminated. In: Bhat, R.A., Dar, G.H., Policarpo Tonelli, F.M. and Hamid, S., Eds., Aquatic Contamination: Tolerance and Bioremediation, Wiley, 189-206.
https://doi.org/10.1002/9781119989318.ch12
[10]  Duwig, C., Archundia, D., Lehembre, F., Spadini, L., Morel, M.C., Uzu, G., et al. (2014) Impacts of Anthropogenic Activities on the Contamination of a Sub Watershed of Lake Titicaca. Are Antibiotics a Concern in the Bolivian Altiplano? Procedia Earth and Planetary Science, 10, 370-375.
https://doi.org/10.1016/j.proeps.2014.08.062
[11]  Monroy, M., Maceda-Veiga, A. and de Sostoa, A. (2014) Metal Concentration in Water, Sediment and Four Fish Species from Lake Titicaca Reveals a Large-Scale Environmental Concern. Science of The Total Environment, 487, 233-244.
https://doi.org/10.1016/j.scitotenv.2014.03.134
[12]  Maldonado, I., Miranda-Mamani, J. and Paredes-Espinal, C. (2023) Heavy Metals and Ecological Alterations Resulting from Wastewater Discharge in Inner Puno Bay, Lake Titicaca. Environmental Nanotechnology, Monitoring & Management, 20, Article ID: 100903.
https://doi.org/10.1016/j.enmm.2023.100903
[13]  Chui, H.N., Roque, B., Huaquisto, E., Sardón, D.L., Belizario, G. and Calatayud, A.P. (2021) Metales pesados en truchas arcoíris (Oncorhynchus mykiss) de crianza intensiva de la zona noroeste del lago Titicaca. Revista de Investigaciones Veterinarias del Perú, 32, e20398.
https://doi.org/10.15381/rivep.v32i3.20398
[14]  Ccanccapa-Cartagena, A., Paredes, B., Vera, C., Chavez-Gonzales, F.D., Olson, E.J., Welp, L.R., et al. (2021) Occurrence and Probabilistic Health Risk Assessment (PRA) of Dissolved Metals in Surface Water Sources in Southern Peru. Environmental Advances, 5, Article ID: 100102.
https://doi.org/10.1016/j.envadv.2021.100102
[15]  Quispe Yana, R.F., Belizario Quispe, G., Chui Betancur, H.N., Huaquisto Cáceres, S., Calatayud Mendoza, A.P. and Yábar Miranda, P.S. (2019) Concentración de metales pesados: cromo, cadmio y plomo en los sedimentos superficiales en el río coata, perú. Revista Boliviana de Química, 2, 83-90.
https://doi.org/10.34098/2078-3949.36.2.3
[16]  Novoa Villa, H.H., Arizaca Ávalos, A. and Huisa Mamani, F. (2022) Efectos en los ecosistemas por presencia de metales pesados en la actividad minera de pequeña escala en Puno. Revista de Investigaciones AltoandinasJournal of High Andean Research, 24, 182-189.
https://doi.org/10.18271/ria.2022.361
[17]  Feng, N. and Guo, X. (2012) Characterization of Adsorptive Capacity and Mechanisms on Adsorption of Copper, Lead and Zinc by Modified Orange Peel. Transactions of Nonferrous Metals Society of China, 22, 1224-1231.
https://doi.org/10.1016/s1003-6326(11)61309-5
[18]  Ismail, U.M., Vohra, M.S. and Onaizi, S.A. (2024) Adsorptive Removal of Heavy Metals from Aqueous Solutions: Progress of Adsorbents Development and Their Effectiveness. Environmental Research, 251, Article ID: 118562.
https://doi.org/10.1016/j.envres.2024.118562
[19]  Cairns, S., Chaudhuri, S., Sigmund, G., Robertson, I., Hawkins, N., Dunlop, T., et al. (2021) Wood Ash Amended Biochar for the Removal of Lead, Copper, Zinc and Cadmium from Aqueous Solution. Environmental Technology & Innovation, 24, Article ID: 101961.
https://doi.org/10.1016/j.eti.2021.101961
[20]  Kelly-Vargas, K., Cerro-Lopez, M., Reyna-Tellez, S., Bandala, E.R. and Sanchez-Salas, J.L. (2012) Biosorption of Heavy Metals in Polluted Water, Using Different Waste Fruit Cortex. Physics and Chemistry of the Earth, Parts A/B/C, 37, 26-29.
https://doi.org/10.1016/j.pce.2011.03.006
[21]  Babarinde, N.A., Babalola, J. and Adebowale, R. (2006) Biosorption of Lead Ions from Aqueous Solution by Maize Leaf. International Journal of Physical Sciences, 1, 23-26.
[22]  Du, S., Li, W., Tang, C., Deng, H., Fatima, M.N. and Bibi, H. (2018) Effect of Chitosan and Sodium Alginate on Heavy Metal Adsorption by Natural Plant Extracts. De-salination and Water Treatment, 318, 1-11.
[23]  Guo, L., Li, J., Li, H., Zhu, Y. and Cui, B. (2020) The Structure Property and Adsorption Capacity of New Enzyme-Treated Potato and Sweet Potato Starches. International Journal of Biological Macromolecules, 144, 863-873.
https://doi.org/10.1016/j.ijbiomac.2019.09.164
[24]  Bashir, A., Manzoor, T., Malik, L.A., Qureashi, A. and Pandith, A.H. (2020) Enhanced and Selective Adsorption of Zn(II), Pb(II), Cd(II), and Hg(II) Ions by a Dumbbell-and Flower-Shaped Potato Starch Phosphate Polymer: A Combined Experimental and DFT Calculation Study. ACS Omega, 5, 4853-4867.
https://doi.org/10.1021/acsomega.9b03607
[25]  Gao, Y., Yi, Z., Wang, J., Ding, F., Fang, Y., Du, A., et al. (2024) Interpretation of the Adsorption Process of Toxic Cd2+ Removal by Modified Sweet Potato Residue. RSC Advances, 14, 433-444.
https://doi.org/10.1039/d3ra06855b
[26]  Choque-Quispe, D., Ligarda-Samanez, C.A., Choque-Quispe, Y., Solano-Reynoso, A.M., Ramos-Pacheco, B.S., Zamalloa-Puma, M.M., et al. (2023) Multimetal Removal in Aqueous Medium Using a Potato Starch/nopal Mucilage Copolymer: A Study of Adsorption Kinetics and Isotherms. Results in Engineering, 18, Article ID: 101164.
https://doi.org/10.1016/j.rineng.2023.101164
[27]  Ashfaq, A., Nadeem, R., Bibi, S., Rashid, U., Hanif, M.A., Jahan, N., et al. (2021) Efficient Adsorption of Lead Ions from Synthetic Wastewater Using Agrowaste-Based Mixed Biomass (Potato Peels and Banana Peels). Water, 13, Article 3344.
https://doi.org/10.3390/w13233344
[28]  Nathan, R.J., Martin, C.E., Barr, D. and Rosengren, R.J. (2021) Simultaneous Removal of Heavy Metals from Drinking Water by Banana, Orange and Potato Peel Beads: A Study of Biosorption Kinetics. Applied Water Science, 11, Article No. 116.
https://doi.org/10.1007/s13201-021-01457-7
[29]  Lamiaa, M.M. (2019) Removal of Copper (II) and Ferric (III) Ions from Aqueous Solutions by Adsorption Using Potato Peel. Assiut Journal of Agricultural Sciences, 50, 98-111.
https://doi.org/10.21608/ajas.2019.52737
[30]  El-Azazy, M., El-Shafie, A.S., Issa, A.A., Al-Sulaiti, M., Al-Yafie, J., Shomar, B., et al. (2019) Potato Peels as an Adsorbent for Heavy Metals from Aqueous Solutions: Eco-Structuring of a Green Adsorbent Operating Plackett-Burman Design. Journal of Chemistry, 2019, Article ID: 4926240.
https://doi.org/10.1155/2019/4926240
[31]  Aman, T., Kazi, A.A., Sabri, M.U. and Bano, Q. (2008) Potato Peels as Solid Waste for the Removal of Heavy Metal Copper(II) from Waste Water/Industrial Effluent. Colloids and Surfaces B: Biointerfaces, 63, 116-121.
https://doi.org/10.1016/j.colsurfb.2007.11.013
[32]  Palabıyık, B.B., Selcuk, H. and Oktem, Y.A. (2019) Cadmium Removal Using Potato Peels as Adsorbent: Kinetic Studies. Desalination and Water Treatment, 172, 148-157.
https://doi.org/10.5004/dwt.2019.24730
[33]  Mankotia, S. and Sharma, S. (2020) Potato (Solanum tuberosum L.) Yield, NPK Concentration and Uptake as Influenced by Variable Levels of Drip Irrigation and Fertigation. International Journal of Current Microbiology and Applied Sciences, 9, 1277-1289.
https://doi.org/10.20546/ijcmas.2020.905.142
[34]  Xu, J., Li, Y., Kaur, L., Singh, J. and Zeng, F. (2023) Functional Food Based on Potato. Foods, 12, Article 2145.
https://doi.org/10.3390/foods12112145
[35]  Peñarrieta, J.M., Salluca, T., Tejeda, L., Alvarado, J.A. and Bergenståhl, B. (2011) Changes in Phenolic Antioxidants during Chuño Production (Traditional Andean Freeze and Sun-Dried Potato). Journal of Food Composition and Analysis, 24, 580-587.
https://doi.org/10.1016/j.jfca.2010.10.006
[36]  Yoshikawa, K. and Apaza, F. (2020) Unfrozen State by the Supercooling of Chuño for Traditional Agriculture in Altiplano Andes. Environmental and Sustainability Indicators, 8, Article ID: 100063.
https://doi.org/10.1016/j.indic.2020.100063
[37]  Escobar-Mamani, F., Moreno-Terrazas, E., Siguayro-Mamani, H. and Argota Pérez, G. (2023) Physicochemical Characterization and Presence of Heavy Metals in the Trout Farming Area of Lake Titicaca, Peru. SAINS TANAHJournal of Soil Science and Agroclimatology, 20, 140-149.
https://doi.org/10.20961/stjssa.v20i2.62357
[38]  Soloisolo, D. (2022) Niveles de plomo y mercurio en agua de la cuenca Llal-limayo durante el proceso de cierre de la mina Arasi S.A.C.—Región Puno. Tesis pregrado. Universidad nacional del Altiplano.
http://repositorio.unap.edu.pe/handle/20.500.14082/17747
[39]  AOAC International (2019) Official Methods of Analysis. 21st Edition, AOAC International.
https://www.aoac.org
[40]  Flaschka, H.A. (1968) EDTA Titrations. Pergamon Press.
[41]  Aparicio, W. and Deza, T. (2021) Adsorption Heavy Metals through the Use of a Natural Biopolymer, (Cocoa Shell) Fron Contaminated Waters. European Journal of Molecular & Clinical Medicine, 8, 1366-1373.
[42]  Popovych, O. and Tomkins, R.P.T. (1981) Nonaqueous Solution Chemistry. John Wiley & Sons.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133