全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Axion Gamma-Ray Signatures from Quark Matter in Neutron Stars and Gravitational Wave Comparisons

DOI: 10.4236/jmp.2025.161007, PP. 152-166

Keywords: Astrophysics, Phenomenology, QCD Axion, Neutron Stars, Nuclear Theory, Gamma Rays, Gravitational Waves, Fermi-LAT

Full-Text   Cite this paper   Add to My Lib

Abstract:

We present a theoretical model for detecting axions from neutron stars in a QCD phase of quark matter. The axions would be produced from a quark-antiquark pair u u ˉ or d d ˉ , in loop(s) involving gluons. The chiral anomaly of QCD and the spontaneously broken symmetry are invoked to explain the non-conservation of the axion current. From the coupling form factors, the axion emissivities a can be derived, from which fluxes can be determined. We predict a photon flux, which may be detectable by Fermi LAT, and limits on the QCD mass m a . In this model, axions decay to gamma rays in a 2-photon vertex. We may determine the expected fluxes from the theoretical emissivity. The sensitivity curve from the Fermi Large Area Telescope (Fermi LAT) would allow axion mass constraints for neutron stars as low as m a 10 14 eV 95% C.L. Axions could thus be detectable in gamma rays for neutron stars as distant as 100 kpc. A signal from LIGO GWS 170817 could be placed from the NS-NS merger, which gives an upper limit of m a 10 10 eV.

References

[1]  Rüster, S.B., Werth, V., Buballa, M., Shovkovy, I.A. and Rischke, D.H. (2006) Phase Diagram of Neutral Quark Matter: The Effect of Neutrino Trapping. Physical Review D, 73, Article ID: 034025.
https://doi.org/10.1103/physrevd.73.034025
[2]  Hassaneen, K.S.A. (2014) The Equation of State of Nuclear Matter and Neutron Stars Properties. Journal of Modern Physics, 5, 1713-1724.
https://doi.org/10.4236/jmp.2014.516171
[3]  Hujeirat, A.A. and Wicker, M.M. (2023) The Eoss and the Blatant Discrepancy in Modelling Massive Neutron Stars: Origin and a Possible Solution Method. Journal of Modern Physics, 14, 1458-1463.
https://doi.org/10.4236/jmp.2023.1411085
[4]  Chen, P. and Labun, L. (2013) Electromagnetic Signal of the QCD Phase Transition in Neutron Star Mergers. Physical Review D, 88, Article ID: 083006.
https://doi.org/10.1103/physrevd.88.083006
[5]  Berenji, B., Gaskins, J. and Meyer, M. (2016) Constraints on Axions and Axionlike Particles from Fermi Large Area Telescope Observations of Neutron Stars. Physical Review D, 93, Article ID: 045019.
https://doi.org/10.1103/physrevd.93.045019
[6]  Berenji, B. (2024) Constraints on Axions from a Relativistic Model of Spatially Extended γ-Ray Emission from Neutron Stars. Journal of Modern Physics, 15, 1980-1997.
https://doi.org/10.4236/jmp.2024.1511082
[7]  Suvorova, S., Sun, L., Melatos, A., Moran, W. and Evans, R.J. (2016) Hidden Markov Model Tracking of Continuous Gravitational Waves from a Neutron Star with Wandering Spin. Physical Review D, 93, Article ID: 123009.
https://doi.org/10.1103/physrevd.93.123009
[8]  Hanhart, C., Phillips, D.R., Reddy, S. and Savage, M.J. (2001) Extra Dimensions, SN1987a, and Nucleon-Nucleon Scattering Data. Nuclear Physics B, 595, 335-359.
https://doi.org/10.1016/s0550-3213(00)00667-2
[9]  Ajello, M., Baldini, L., Barbiellini, G., Bastieri, D., Bechtol, K., Bellazzini, R., Berenji, B., et al. (2012) Limits on Large Extra Dimensions Based on Observations of Neutron Stars with the Fermi-LAT. Journal of Cosmology and Astroparticle Physics, 2, Article 12.
http://stacks.iop.org/1475-7516/2012/i=02/a=012
[10]  Raffelt, G.G. (1990) Astrophysical Methods to Constrain Axions and Other Novel Particle Phenomena. Physics Reports, 198, 1-113.
https://doi.org/10.1016/0370-1573(90)90054-6
[11]  Cheng, T.P. and Li, L. (19888) Gauge Theory of Elementary Particle Physics. Oxford University Press.
[12]  Peccei, R.D. and Quinn, H.R. (1977) CP Conservation in the Presence of Pseu-doparticles. Physical Review Letters, 38, 1440-1443.
https://doi.org/10.1103/physrevlett.38.1440
[13]  Weinberg, S. (1978) A New Light Boson? Physical Review Letters, 40, 223-226.
https://doi.org/10.1103/physrevlett.40.223
[14]  Wilczek, F. and Zee, A. (1978) Instantons and Spin Forces between Massive Quarks. Physical Review Letters, 40, 83-86.
https://doi.org/10.1103/physrevlett.40.83
[15]  Preskill, J., Wise, M.B. and Wilczek, F. (1983) Cosmology of the Invisible Axion. Physics Letters B, 120, 127-132.
https://doi.org/10.1016/0370-2693(83)90637-8
[16]  Raffelt, G.G. (1996) Stars as Laboratories for Fundamental Physics: The Astrophysics of Neutrinos, Axions, and Other Weakly Interacting Particles. University of Chicago Press.
[17]  Gondolo, P. and Raffelt, G.G. (2009) Solar Neutrino Limit on Axions and Kev-Mass Bosons. Physical Review D, 79, Article ID: 107301.
https://doi.org/10.1103/physrevd.79.107301
[18]  Horns, D., Maccione, L., Meyer, M., Mirizzi, A., Montanino, D. and Roncadelli, M. (2012) Hardening of TEV γ Spectrum of Active Galactic Nuclei in Galaxy Clusters by Conversions of Photons into Axionlike Particles. Physical Review D, 86, Article ID: 075024.
https://doi.org/10.1103/physrevd.86.075024
[19]  Sánchez-Conde, M.A., Paneque, D., Bloom, E., Prada, F. and Domínguez, A. (2009) Hints of the Existence of Axionlike Particles from the Gamma-Ray Spectra of Cosmological Sources. Physical Review D, 79, Article ID: 123511.
https://doi.org/10.1103/physrevd.79.123511
[20]  Brockway, J.W., Carlson, E.D. and Raffelt, G.G. (1996) SN 1987A Gamma-Ray Limits on the Conversion of Pseudoscalars. Physics Letters B, 383, 439-443.
https://doi.org/10.1016/0370-2693(96)00778-2
[21]  Csáki, C., Kaloper, N. and Terning, J. (2002) Dimming Supernovae without Cosmic Acceleration. Physical Review Letters, 88, Article ID: 161302.
https://doi.org/10.1103/physrevlett.88.161302
[22]  Lande, J., Ackermann, M., Allafort, A., Ballet, J., Bechtol, K., Burnett, T.H., et al. (2012) Search for Spatially Extended Fermi Large Area Telescope Sources Using Two Years of Data. The Astrophysical Journal, 756, Article 5.
https://doi.org/10.1088/0004-637x/756/1/5
[23]  Abazajian, K.N. and Kaplinghat, M. (2012) Detection of a Gamma-Ray Source in the Galactic Center Consistent with Extended Emission from Dark Matter Annihilation and Concentrated Astrophysical Emission. Physical Review D, 86, Article 5.
https://doi.org/10.1103/physrevd.86.083511
[24]  Giannotti, M., Duffy, L.D. and Nita, R. (2011) New Constraints for Heavy Axion-Like Particles from Supernovae. Journal of Cosmology and Astroparticle Physics, 2011, Article 15.
https://doi.org/10.1088/1475-7516/2011/01/015
[25]  Berenji, B. (2017) Fermi LAT Collaboration, A Model for Axions Producing Extended γ-Ray Emission from Neutron Star J0108-1431. American Astronomical Society.
[26]  Abbott, B.P., et al. (2016) Observation of Gravitational Waves from a Binary Black Hole Merger. Physical Review Letters, 116, Article ID: 061102.
https://link.aps.org/doi/10.1103/PhysRevLett.116.061102
[27]  Rüster, S.B., Werth, V., Buballa, M., Shovkovy, I.A. and Rischke, D.H. (2005) Phase Diagram of Neutral Quark Matter: Self-Consistent Treatment of Quark Masses. Physical Review D, 72, 1980-1997.
https://doi.org/10.1103/physrevd.72.034004
[28]  Graham, P.W. and Rajendran, S. (2013) New Observables for Direct Detection of Axion Dark Matter. Physical Review D, 88, Article ID: 035023.
https://doi.org/10.1103/physrevd.88.035023
[29]  Rogers, K.K. and Peiris, H.V. (2021) Strong Bound on Canonical Ultralight Axion Dark Matter from the Lyman-α Forest. Physical Review Letters, 126, Article ID: 071302.
https://doi.org/10.1103/physrevlett.126.071302
[30]  Srednicki, M. (1985) Axion Couplings to Matter. Nuclear Physics B, 260, 689-700.
https://doi.org/10.1016/0550-3213(85)90054-9
[31]  Peskin, M.E. and Schroeder, D.V. (1995) An Introduction to Quantum Field Theory (Frontiers in Physics). Westview Press.
http://www.amazon.com/Introduction-Quantum-Theory-Frontiers-Physics/dp/0201503972%3FSubscriptionId%3D13CT5CVB80YFWJEPWS02%26tag%3Dws%26linkCode%3Dxm2%26camp%3D2025%29826creative%3D165953%26creativeASIN%3D0201503972
[32]  Bernreuther, W., Bonciani, R., Gehrmann, T., Heinesch, R., Leineweber, T. and Remiddi, E. (2005) Two-loop QCD Corrections to the Heavy Quark Form Factors: Anomaly Contributions. Nuclear Physics B, 723, 91-116.
https://doi.org/10.1016/j.nuclphysb.2005.06.025
[33]  Weber, F. (2005) Strange Quark Matter and Compact Stars. Progress in Particle and Nuclear Physics, 54, 193-288.
https://doi.org/10.1016/j.ppnp.2004.07.001
[34]  Alford, M.G. (2009) Quark Matter in Neutron Stars. Nuclear Physics A, 830, 385c-392c.
https://doi.org/10.1016/j.nuclphysa.2009.09.034
[35]  Atwood, W.B., et al. (2009) The Large Area Telescope on the Fermi γ-Ray Space Telescope Mission. The Astrophysical Journal, 697, Article 1071.
http://stacks.iop.org/0004-637X/697/i=2/a=1071
[36]  Olive, K.A. (2014) Review of Particle Physics. Chinese Physics C, 38, Article ID: 090001.
https://doi.org/10.1088/1674-1137/38/9/090001
[37]  Armengaud, E., Arnaud, Q., Augier, C., Benoit, A., Benoit, A., Bergé, L., et al. (2013) Axion Searches with the EDELWEISS-II Experiment. Journal of Cosmology and Astroparticle Physics, 2013, Article 67.
https://doi.org/10.1088/1475-7516/2013/11/067
[38]  Abbott, L.F. and Sikivie, P. (1983) A Cosmological Bound on the Invisible Axion. Physics Letters B, 120, 133-136.
https://doi.org/10.1016/0370-2693(83)90638-x
[39]  Hannestad, S., Mirizzi, A. and Raffelt, G. (2005) A New Cosmological Mass Limit on Thermal Relic Axions. Journal of Cosmology and Astroparticle Physics, 2005, Article 2.
https://doi.org/10.1088/1475-7516/2005/07/002
[40]  Hannestad, S., Mirizzi, A., Raffelt, G.G. and Wong, Y.Y.Y. (2010) Neutrino and Axion Hot Dark Matter Bounds after WMAP-7. Journal of Cosmology and Astroparticle Physics.
https://iopscience.iop.org/article/10.1088/1475-7516/2010/08/001

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133