全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Complex Field Theory: A Unifying Framework for Dark Matter and Dark Energy with the Material Universe

DOI: 10.4236/jmp.2025.161006, PP. 140-151

Keywords: Dark Energy, Dark Matter, Complex Field Theory, Entanglement, Zero-Point Energy, Particle-Wave Duality, Gravity, Unification of Coulomb’s and Newton’s Laws, Tachyons, Spooky Action Effect

Full-Text   Cite this paper   Add to My Lib

Abstract:

Complex Field Theory (CFT) proposes that dark matter (DM) and dark energy (DE) are pervasive, complex fields of charged complex masses of equally positive and negative complex charges, respectively. It proposes that each material object, including living creatures, is concomitant with a fraction of the charged complex masses of DM and DE in proportion to its mass. This perception provides new insights into the physics of nature and its constituents from subatomic to cosmic scales. This complex nature of DM and DE explains our inability to see DM or harvest DE for the last several decades. The positive complex DM is responsible for preserving the integrity of galaxies and all material systems. The negative complex charged DE induces a positive repelling force with the positively charged DM and contributes to the universe’s expansion. Both fields are Lorentz invariants in all directions and entangle the whole universe. The paper uses CFT to investigate zero-point energy, particle-wave duality, relativistic mass increase, and entanglement phenomenon and unifies Coulomb’s and Newton’s laws. The paper also verifies the existence of tachyons and explains the spooky action of quantum mechanics at a distance. The paper encourages further research into how CFT might resolve several physical mysteries in physics.

References

[1]  Trimble, V. (1987) Existence and Nature of Dark Matter in the Universe. Annual Review of Astronomy and Astrophysics, 25, 425-472.
https://escholarship.org/content/qt2hz008rs/qt2hz008rs.pdf
[2]  DOE.
https://www.energy.gov/science/doe-explainsdark-matter
[3]  Bucklin, S.M. (2017) A History of Dark Matter.
https://arstechnica.com/science/2017/02/a-history-of-dark-matter/
[4]  Abdeldayem, H. (2022) Complex Field Theory and Gravity’s New Perspective. Current Trends in Physica, 1, Article 101.
https://doi.org/10.29011/CTP-101.100001
[5]  Abdeldayem, H. (2023) The Complex Field Theory and Mass Formation—An Alternative Model to Higgs Mechanism. Journal of Modern Physics, 14, 562-572.
https://www.scirp.org/journal/paperinformation?paperid=124305
[6]  Karam, R. (2020) Schrödinger’s Original Struggles with a Complex Wave Function. American Journal of Physics, 88, 433-438.
https://doi.org/10.1119/10.0000852
[7]  Feinberg, G. (1967) Possibility of Faster-Than-Light Particles. Physical Review, 159, 1089-1105.
https://doi.org/10.1103/physrev.159.1089
[8]  Bilaniuk, O. and Sudarshan, E.C.G. (1969) Particles Beyond the Light Barrier. Physics Today, 22, 43-51.
https://doi.org/10.1063/1.3035574
[9]  Bilaniuk, O.M.P., Deshpande, V.K. and Sudarshan, E.C.G. (1962) Meta Relativity. American Journal of Physics, 30, 718.
http://doi:10.1119/1.1941773
[10]  Tanaka, S. (1960) Theory of Matter with Super Light Velocity. Progress of Theoretical Physics, 24, 171-200.
https://doi.org/10.1143/ptp.24.171
[11]  Boyer, T.H. (1968) Quantum Electromagnetic Zero-Point Energy and Retarded Dispersion Forces. Physical Review, 174, 1631-1638.
https://doi.org/10.1103/physrev.174.1631
[12]  Jaffe, R.L. (2005) Color Nonsinglet Spectroscopy. Physical Review D, 72, Article ID: 021301.
https://doi.org/10.1103/physrevd.72.074508
[13]  Casimir, H.B.G. (1948) On the Attraction between Two Perfectly Conducting Plates. Kon. Ned. Akad. Wetensch. Proc, 51, 793-795.
[14]  Maclay, G.J. (2000) Analysis of Zero-Point Electromagnetic Energy and Casimir Forces in Conducting Rectangular Cavities. Physical Review A, 61.
[15]  Léger, S., et al. (2019) Observation of Quantum Many-Body Effects Due to Zero Point Fluctuations in Superconducting Circuits. Nature Communications, 10, Article No. 5259.
https://www.nature.com/articles/s41467-019-13199-x
[16]  Power, E.A. (1966) Zero-Point Energy, and the Lamb Shift. American Journal of Physics, 34.
[17]  Klauber, R.D. (2013) Student Friendly Quantum Field Theory Book. Sandtrove Press.
[18]  Peskin, M.E. and Schroeder, D.V. (1995) An Introduction to Quantum Field Theory Book.
[19]  Young, T. (1804) The Bakerian Lecture. Experiments and Calculation Relative to Physical Optics. Philosophical Transactions of the Royal Society of London, 94, 1-16.
[20]  Arons, A.B. and Peppard, M.B. (1965) Einstein’s Proposal of the Photon Concept—A Translation of the Annalen der Physik Paper of 1905. American Journal of Physics, 33, 365.
http://doi:10.1119/1.1971542
[21]  de Broglie, L.V. (2004) Foundation of Louis de Broglie (Translation by Kracklauer, A.F.).
[22]  Navarro, J. (2010) Electron Diffraction chez Thomson: Early Responses to Quantum Physics in Britain. The British Journal for the History of Science, 43, 245-275.
https://doi.org/10.1017/s0007087410000026
[23]  Thomson, G.P. and Reid, A. (1927) Diffraction of Cathode Rays by a Thin Film. Nature, 119, 890-890.
https://doi.org/10.1038/119890a0
[24]  Eibenberger, S., Gerlich, S., Arndt, M., Mayor, M. and Tüxen, J. (2013) Matter-Wave Interference of Particles Selected from a Molecular Library with Masses Exceeding 10 000 Amu. Physical Chemistry Chemical Physics, 15, 14696-14700.
https://doi.org/10.1039/c3cp51500a
[25]  Butkov, E. (1968) Mathematical Physics Book. Addison-Wesley Publishing Co., 56.
[26]  Einstein, A., Podolsky, B. and Rosen, N. (1935) Can Quantum-Mechanical Description of Physical Reality Be Considered Complete? Physical Review, 47, 777-780.
https://doi.org/10.1103/physrev.47.777
[27]  Bohr, N. (1935) Can Quantum-Mechanical Description of Physical Reality Be Considered Complete? Physical Review, 48, 696-702.
https://doi.org/10.1103/physrev.48.696
[28]  Bell, J.S. (1964) On the Einstein Podolsky Rosen Paradox. Physics Physique Fizika, 1, 195-200.
https://doi.org/10.1103/physicsphysiquefizika.1.195
[29]  Freedman, S.J. and Clauser, J.F. (1972) Experimental Test of Local Hidden-Variable Theories. Physical Review Letters, 28, 938-941.
https://doi.org/10.1103/physrevlett.28.938
[30]  Aspect, A., Grangier, P. and Roger, G. (1982) Experimental Realization of Einstein-Podolsky-Rosen-Bohm Gedankenexperiment: A New Violation of Bell’s Inequalities. Physical Review Letters, 49, 91-94.
https://doi.org/10.1103/physrevlett.49.91
[31]  Jones, S.J., Wiseman, H.M. and Doherty, A.C. (2007) Entanglement, Einstein-Podolsky-Rosen Correlations, Bell Nonlocality, and Steering. Physical Review A, 76, Article ID: 052116.
https://doi.org/10.1103/physreva.76.052116
[32]  Splettstoesser, J., Moskalets, M. and Büttiker, M. (2009) Two-particle Nonlocal Aharonov-Bohm Effect from Two Single-Particle Emitters. Physical Review Letters, 103, Article ID: 076804.
https://doi.org/10.1103/physrevlett.103.076804
[33]  Tian, Z., Wang, J. and Jing, J. (2012) Nonlocality and Entanglement via the Unruh Effect. Annals of Physics, 332, 98-109.
https://doi.org/10.1016/j.aop.2013.01.015
[34]  Friedman, J.I. and Kendall, H.W. (1972) Deep Inelastic Electron Scattering. Annual Review of Nuclear Science, 22, 203-254.
https://doi.org/10.1146/annurev.ns.22.120172.001223
[35]  Taylor, R.E. (1991) Deep Inelastic Scattering: The Early Years. Reviews of Modern Physics, 63, 573-595.
https://doi.org/10.1103/revmodphys.63.573
[36]  Kendall, H.W. (1991) Deep Inelastic Scattering: Experiments on the Proton and the Observation of Scaling. Reviews of Modern Physics, 63, 597-614.
https://doi.org/10.1103/revmodphys.63.597
[37]  Friedman, J.I. (1991) Deep Inelastic Scattering: Comparisons with the Quark Model. Reviews of Modern Physics, 63, 615-627.
https://doi.org/10.1103/revmodphys.63.615
[38]  Yin, J., et al. (2013) Lower Bound on the Speed of Nonlocal Correlations without Locality and Measurement Choice Loopholes. Physical Review Letter, 110, Article ID: 260407.
[39]  Lee, K.C., Sprague, M.R., Sussman, B.J., Nunn, J., Langford, N.K., Jin, X., et al. (2011) Entangling Macroscopic Diamonds at Room Temperature. Science, 334, 1253-1256.
https://doi.org/10.1126/science.1211914
[40]  Veldman, L.M., Farinacci, L., Rejali, R., Broekhoven, R., Gobeil, J., Coffey, D., et al. (2021) Free Coherent Evolution of a Coupled Atomic Spin System Initialized by Electron Scattering. Science, 372, 964-968.
https://doi.org/10.1126/science.abg8223
[41]  Zee, A. (2003) Quantum Field Theory in a Nutshell. Princeton University Press.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133