The interannual variability of Normalized Difference Vegetation Index (NDVI) over East Africa demonstrates the complex interactions between vegetation dynamics and climatic factors. This study, which spans the period from 1983 to 2022, makes use of data from NOAA, ERA5, and CRU. It employs a range of statistical techniques, including the calculation of standardized anomalies, significance testing, composites and correlation analyses. The results demonstrated an increase in NDVI over regions including Kenya, Central and Northeastern Tanzania during wet years, with significantly higher NDVI compared to drought years. Conversely, regions such as Uganda, Rwanda, Burundi, and parts of western and southern Tanzania exhibited lower NDVI during wet years than in drought years, thereby underscoring the existence of significant regional differences in vegetation responses to climatic conditions. The results of the correlation analysis indicated that there was a negative correlation between NDVI and SLHF, air temperature, and soil temperature, while positive correlations were observed between NDVI and SSHF, precipitation, and soil moisture. Furthermore, teleconnections with large-scale climate indices demonstrated modest correlations: Ni?o 3.4 (r = 0.33), DMI (r = 0.11), and AMO (r = 0.03). These findings emphasize the pivotal role of climatic and meteorological factors in influencing vegetation dynamics, offering insights for sustainable land management and climate adaptation strategies in East Africa.
References
[1]
Aguilar, C., Zinnert, J. C., Polo, M. J., & Young, D. R. (2012). NDVI as an Indicator for Changes in Water Availability to Woody Vegetation. Ecological Indicators, 23, 290-300. https://doi.org/10.1016/j.ecolind.2012.04.008
[2]
Areffian, A., Eslamian, S., Sadr, M. K., & Khoshfetrat, A. (2021). Monitoring the Effects of Drought on Vegetation Cover and Ground Water Using MODIS Satellite Images and Ann. KSCE Journal of Civil Engineering, 25, 1095-1105. https://doi.org/10.1007/s12205-021-2062-x
[3]
ASMET (2019). 2009 Drought in East Africa. Africa Satelite Meteorology Education and Training.
[4]
Ayugi, B., Dike, V., Ngoma, H., Babaousmail, H., Mumo, R., & Ongoma, V. (2021). Future Changes in Precipitation Extremes over East Africa Based on CMIP6 Models. Water, 13, Article2358. https://doi.org/10.3390/w13172358
[5]
Bateni, S. M., Entekhabi, D., Margulis, S., Castelli, F., & Kergoat, L. (2014). Coupled Estimation of Surface Heat Fluxes and Vegetation Dynamics from Remotely Sensed Land Surface Temperature and Fraction of Photosynthetically Active Radiation. Water Resources Research, 50, 8420-8440. https://doi.org/10.1002/2013wr014573
[6]
Bonan, G. B. (2008). Forests and Climate Change: Forcings, Feedbacks, and the Climate Benefits of Forests. Science, 320, 1444-1449. https://doi.org/10.1126/science.1155121
[7]
Borhara, K., Pokharel, B., Bean, B., Deng, L., & Wang, S. S. (2020). On Tanzania’s Precipitation Climatology, Variability, and Future Projection. Climate, 8, Article 34. https://doi.org/10.3390/cli8020034
[8]
Cane, M. A. (1983). Oceanographic Events during El Niño. Science, 222, 1189-1195. https://doi.org/10.1126/science.222.4629.1189
[9]
Chang’a, L. B., Kijazi, A. L., Luhunga, P. M., Ng’ongolo, H. K., & Mtongor, H. I. (2017). Spatial and Temporal Analysis of Rainfall and Temperature Extreme Indices in Tanzania. Atmospheric and Climate Sciences, 7, 525-539. https://doi.org/10.4236/acs.2017.74038
[10]
Clark, C. O., Webster, P. J., & Cole, J. E. (2003). Interdecadal Variability of the Relationship between the Indian Ocean Zonal Mode and East African Coastal Rainfall Anomalies. Journal of Climate, 16, 548-554. https://doi.org/10.1175/1520-0442(2003)016<0548:ivotrb>2.0.co;2
[11]
Davenport, M. L., & Nicholson, S. E. (1993). On the Relation between Rainfall and the Normalized Difference Vegetation Index for Diverse Vegetation Types in East Africa. International Journal of Remote Sensing, 14, 2369-2389. https://doi.org/10.1080/01431169308954042
[12]
Diallo, I., Giorgi, F., & Stordal, F. (2018). Influence of Lake Malawi on Regional Climate from a Double-Nested Regional Climate Model Experiment. Climate Dynamics, 50, 3397-3411. https://doi.org/10.1007/s00382-017-3811-x
[13]
Ding, M., Zhang, Y., Liu, L., Zhang, W., Wang, Z., & Bai, W. (2007). The Relationship between NDVI and Precipitation on the Tibetan Plateau. Journal of Geographical Sciences, 17, 259-268. https://doi.org/10.1007/s11442-007-0259-7
[14]
Duveiller, G., Hooker, J., & Cescatti, A. (2018). The Mark of Vegetation Change on Earth’s Surface Energy Balance. Nature Communications, 9, Article No. 679. https://doi.org/10.1038/s41467-017-02810-8
[15]
Fu, C., Hao, H., Li, T., Li, Y., & Yang, F. (2024). Lag Effects of Vegetation of Temperature Stress on and Its Ecological Risk Assessment. Frontiers in Environmental Science, 12, Article 1424578. https://doi.org/10.3389/fenvs.2024.1424578
[16]
Gessesse, A. A., & Melesse, A. M. (2019). Temporal Relationships between Time Series Chirps-Rainfall Estimation and eMODIS-NDVI Satellite Images in Amhara Region, Ethiopia. In A. M. Melesse, W. Abtew, & G. Senay (Eds.), Extreme Hydrology and Climate Variability (pp. 81-92). Elsevier. https://doi.org/10.1016/b978-0-12-815998-9.00008-7
[17]
Ghebrezgabher, M. G., Yang, T., Yang, X., & Eyassu Sereke, T. (2020). Assessment of NDVI Variations in Responses to Climate Change in the Horn of Africa. The Egyptian Journal of Remote Sensing and Space Science, 23, 249-261. https://doi.org/10.1016/j.ejrs.2020.08.003
[18]
Gilbert Ouma (2024). Kenya’s Had Unusually Hot Weather—An Expert Unpacks What Could Be Causing It. PreventionWeb.
[19]
Gore, S. M., Jones, I. G., & Rytter, E. C. (1977). Misuse of Statistical Methods: Critical Assessment of Articles in BMJ from January to March 1976. BMJ, 1, 85-87. https://doi.org/10.1136/bmj.1.6053.85
[20]
Gray, M. A., McGowan, H. A., Lowry, A. L., & Guyot, A. (2018). Surface Energy Exchanges over Contrasting Vegetation Types on a Sub-Tropical Sand Island. Agricultural and Forest Meteorology, 249, 81-99. https://doi.org/10.1016/j.agrformet.2017.11.018
[21]
Habib, E., Krajewski, W. F., & Ciach, G. J. (2001). Estimation of Rainfall Interstation Correlation. Journal of Hydrometeorology, 2, 621-629. https://doi.org/10.1175/1525-7541(2001)002<0621:eoric>2.0.co;2
[22]
Han, W., Chen, D., Li, H., Chang, Z., Chen, J., Ye, L. et al. (2022). Spatiotemporal Variation of NDVI in Anhui Province from 2001 to 2019 and Its Response to Climatic Factors. Forests, 13, Article 1643. https://doi.org/10.3390/f13101643
[23]
Harris, I., Osborn, T. J., Jones, P., & Lister, D. (2020). Version 4 of the CRU TS Monthly High-Resolution Gridded Multivariate Climate Dataset. Scientific Data, 7, Article No. 109. https://doi.org/10.1038/s41597-020-0453-3
[24]
IOM (2023). Horn of Africa Drought 2022: Human Mobility Snap-Shot.
[25]
Kalisa, W., Igbawua, T., Henchiri, M., Ali, S., Zhang, S., Bai, Y. et al. (2019). Assessment of Climate Impact on Vegetation Dynamics over East Africa from 1982 to 2015. Scientific Reports, 9, Article No. 16865. https://doi.org/10.1038/s41598-019-53150-0
[26]
Kalisa, W., Igbawua, T., Ujoh, F., Aondoakaa, I. S., Namugize, J. N., & Zhang, J. (2021). Spatio-temporal Variability of Dry and Wet Conditions over East Africa from 1982 to 2015 Using Quantile Regression Model. Natural Hazards, 106, 2047-2076. https://doi.org/10.1007/s11069-021-04530-1
[27]
Kavishe, G. M., & Limbu, P. T. S. (2020). Variation of October to December Rainfall in Tanzania and Its Association with Sea Surface Temperature. Arabian Journal of Geosciences, 13, Article No. 534. https://doi.org/10.1007/s12517-020-05535-z
[28]
Kijazi, A., & Reason, C. (2009). Analysis of the 1998 to 2005 Drought over the Northeastern Highlands of Tanzania. Climate Research, 38, 209-223. https://doi.org/10.3354/cr00784
[29]
Kim, I., Stuecker, M. F., Timmermann, A., Zeller, E., Kug, J., Park, S. et al. (2021). Tropical Indo-Pacific SST Influences on Vegetation Variability in Eastern Africa. Scientific Reports, 11, Article No. 10462. https://doi.org/10.1038/s41598-021-89824-x
[30]
Kimani, M., Hoedjes, J., & Su, Z. (2017). An Assessment of Satellite-Derived Rainfall Products Relative to Ground Observations over East Africa. Remote Sensing, 9, Article 430. https://doi.org/10.3390/rs9050430
[31]
Koutsouris, A. J., Chen, D., & Lyon, S. W. (2016). Comparing Global Precipitation Data Sets in Eastern Africa: A Case Study of Kilombero Valley, Tanzania. International Journal of Climatology, 36, 2000-2014. https://doi.org/10.1002/joc.4476
[32]
Kraetzig, N. M. (2022). Things to Know about NDVI (Normalized Difference Vegetation Index). UP42 Official Website.
[33]
MacLeod, D., & Caminade, C. (2019). The Moderate Impact of the 2015 El Niño over East Africa and Its Representation in Seasonal Reforecasts. Journal of Climate, 32, 7989-8001. https://doi.org/10.1175/jcli-d-19-0201.1
[34]
Mao, X., Ren, H., & Liu, G. (2022). Primary Interannual Variability Patterns of the Growing-Season NDVI over the Tibetan Plateau and Main Climatic Factors. Remote Sensing, 14, Article 5183. https://doi.org/10.3390/rs14205183
[35]
McNally, A., Funk, C., Husak, G. J., Michaelsen, J., Cappelaere, B., Demarty, J., Pellarin, T., Young, T. P., Caylor, K. K., Riginos, C., & Veblen, K. E. (2013). Estimating Sahelian and East African Soil Moisture Using the Normalized Difference Vegetation Index. https://doi.org/10.5194/hessd-10-7963-2013
[36]
Nicholson, S. E., Davenport, M. L., & Malo, A. R. (1990). A Comparison of the Vegetation Response to Rainfall in the Sahel and East Africa, Using Normalized Difference Vegetation Index from NOAA AVHRR. Climatic Change, 17, 209-241. https://doi.org/10.1007/bf00138369
[37]
Ongoma, V., & Chen, H. (2017). Temporal and Spatial Variability of Temperature and Precipitation over East Africa from 1951 to 2010. Meteorology and Atmospheric Physics, 129, 131-144. https://doi.org/10.1007/s00703-016-0462-0
[38]
Palmer, P. I., Wainwright, C. M., Dong, B., Maidment, R. I., Wheeler, K. G., Gedney, N. et al. (2023). Drivers and Impacts of Eastern African Rainfall Variability. Nature Reviews Earth & Environment, 4, 254-270. https://doi.org/10.1038/s43017-023-00397-x
[39]
Pang, G., Chen, D., Wang, X., & Lai, H. (2022). Spatiotemporal Variations of Land Surface Albedo and Associated Influencing Factors on the Tibetan Plateau. Science of the Total Environment, 804, Article ID: 150100. https://doi.org/10.1016/j.scitotenv.2021.150100
[40]
Parracciani, C., Buitenwerf, R., & Svenning, J. (2023). Impacts of Climate Change on Vegetation in Kenya: Future Projections and Implications for Protected Areas. Land, 12, Article 2052. https://doi.org/10.3390/land12112052
[41]
Paruelo, J. M., & Lauenroth, W. K. (1998). Interannual Variability of NDVI and Its Relationship to Climate for North American Shrublands and Grasslands. Journal of Biogeography, 25, 721-733. https://doi.org/10.1046/j.1365-2699.1998.2540721.x
[42]
Philander, S. G. H. (1983). El Niño Southern Oscillation Phenomena. Nature, 302, 295-301. https://doi.org/10.1038/302295a0
[43]
Pregitzer, K. S., & King, J. S. (2005). Effects of Soil Temperature on Nutrient Uptake. In H. BassiriRad (Ed.), Nutrient Acquisition by Plants (pp. 277-310). Springer-Verlag. https://doi.org/10.1007/3-540-27675-0_10
[44]
Rasmusson, E. M., & Wallace, J. M. (1983). Meteorological Aspects of the El Niño/Southern Oscillation. Science, 222, 1195-1202. https://doi.org/10.1126/science.222.4629.1195
[45]
Runke, W., Xiaoni, Y., Yaya, S., Chengyong, W., & Baokang, L. (2022). Study on Air Temperature Estimation and Its Influencing Factors in a Complex Mountainous Area. PLOS ONE, 17, e0272946. https://doi.org/10.1371/journal.pone.0272946
[46]
Sheriff, A. (2017). The Swahili in the African and Indian Ocean Worlds to c. 1500. In Oxford Research Encyclopedia of African History. Oxford University Press. https://doi.org/10.1093/acrefore/9780190277734.013.152
[47]
Slingo, J. M., & Annamalai, H. (2000). 1997: The El Niño of the Century and the Response of the Indian Summer Monsoon. Monthly Weather Review, 128, 1778-1797. https://doi.org/10.1175/1520-0493(2000)128<1778:tenoot>2.0.co;2
[48]
Sonia,, Sunita,, Ghosh, T., Amari, A., Yadav, V. K., Osman, H. et al. (2023). Appraisal of Long-Term Responsiveness of Normalized Difference Vegetation Index to Climatic Factors Using Multiscale Time-Frequency Decomposition in an Arid Environment. Frontiers in Earth Science, 11, Article 1265292. https://doi.org/10.3389/feart.2023.1265292
[49]
Su, Y., Zhang, C., Chen, X., Liu, L., Ciais, P., Peng, J. et al. (2021). Aerodynamic Resistance and Bowen Ratio Explain the Biophysical Effects of Forest Cover on Understory Air and Soil Temperatures at the Global Scale. Agricultural and Forest Meteorology, 308, Article ID: 108615. https://doi.org/10.1016/j.agrformet.2021.108615
[50]
Sun, D., & Kafatos, M. (2007). Note on the NDVI‐LST Relationship and the Use of Temperature-Related Drought Indices over North America. Geophysical Research Letters, 34, L24406. https://doi.org/10.1029/2007gl031485
[51]
Tucker, C. J., Pinzon, J. E., Brown, M. E., Slayback, D. A., Pak, E. W., Mahoney, R. et al. (2005). An Extended AVHRR 8‐km NDVI Dataset Compatible with MODIS and SPOT Vegetation NDVI Data. International Journal of Remote Sensing, 26, 4485-4498. https://doi.org/10.1080/01431160500168686
[52]
van Heerwaarden, C. C., & Teuling, A. J. (2014). Disentangling the Response of Forest and Grassland Energy Exchange to Heatwaves under Idealized Land-Atmosphere Coupling. Biogeosciences, 11, 6159-6171. https://doi.org/10.5194/bg-11-6159-2014
[53]
Walther, G., Post, E., Convey, P., Menzel, A., Parmesan, C., Beebee, T. J. C. et al. (2002). Ecological Responses to Recent Climate Change. Nature, 416, 389-395. https://doi.org/10.1038/416389a
[54]
Ward, N., Walker, D. P., Keane, R. J., Marsham, J. H., Scaife, A. A., Birch, C. E. et al. (2023). Predictability of the East Africa Long Rains through Congo Zonal Winds. Atmospheric Science Letters, 24, e1185. https://doi.org/10.1002/asl.1185
[55]
Yang, X., Yang, T., Ji, Q., He, Y., & Ghebrezgabher, M. G. (2014). Regional-scale Grassland Classification Using Moderate-Resolution Imaging Spectrometer Datasets Based on Multistep Unsupervised Classification and Indices Suitability Analysis. Journal of Applied Remote Sensing, 8, Article ID: 083548. https://doi.org/10.1117/1.jrs.8.083548
[56]
Zaitchik, B. F., Evans, J. P., Geerken, R. A., & Smith, R. B. (2007). Climate and Vegetation in the Middle East: Interannual Variability and Drought Feedbacks. Journal of Climate, 20, 3924-3941. https://doi.org/10.1175/jcli4223.1
[57]
Zhang, J., Yang, T., Deng, M., Huang, H., Han, Y., & Xu, H. (2023). Spatiotemporal Variations and Its Driving Factors of NDVI in Northwest China during 2000-2021. Environmental Science and Pollution Research, 30, 118782-118800. https://doi.org/10.1007/s11356-023-30250-z
[58]
Zhang, M., Wang, J., & Li, S. (2019). Tempo-Spatial Changes and Main Anthropogenic Influence Factors of Vegetation Fractional Coverage in a Large-Scale Opencast Coal Mine Area from 1992 to 2015. Journal of Cleaner Production, 232, 940-952. https://doi.org/10.1016/j.jclepro.2019.05.334