|
基于CASA模型的呼伦贝尔牧草产量估算研究
|
Abstract:
呼伦贝尔草原是著名的天然牧场,畜牧业也是呼伦贝尔草原地区的基础性产业,充分发挥畜牧业优势对于提高草原地区牧民收入有着重大意义。为获得长时序牧草产量数据,本文利用地理信息和遥感技术,基于CASA模型估算出呼伦贝尔市牧业五旗2001~2020年牧草生长季(5~8月)的牧草产量,并分别用各牧业旗生态观测站的实测产量数据对模拟产量数据进行精度验证。本研究首先阐释CASA模型的基本原理及模型框架,介绍CASA模型中估算牧草产量的两个关键参量:植被吸收的光合有效辐射和实际光能利用率。通过太阳总辐射和植物光合有效辐射吸收比例确定植被吸收的光合有效辐射,通过温度胁迫因子、水分胁迫因子、最大光能利用率确定实际光能利用率,最终计算出2001~2020年呼伦贝尔市牧业五旗牧草生长季的NPP。根据2001~2020年呼伦贝尔地区逐年的土地覆盖数据提取草原用地,经空间统计分析提取出牧业五旗的牧草生长季(5~8月)逐年平均NPP,进而转换成牧草产量。对比分析牧草估测产量与实测产量之间的相关性系数、均方根误差、平均绝对误差三种精度评价指标,验证CASA模型估产精度。实测产量值与估测产量值的相关性系数分布区间为0.76~0.82、均方根误差区间为20.42~24.21 g/m2、平均绝对误差区间为17.94~23.19 g/m2,三项误差指标均在合理误差范围内。结果表明CASA模型模拟出的牧草产量数据精度较高,可为呼伦贝尔畜牧业高质量发展提供技术支撑。
Hulunbuir grassland is a famous natural pasture, and animal husbandry is also a basic industry in Hulunbuir grassland area, giving full play to the advantages of animal husbandry is of great significance to improve the income of herdsmen in the grassland area. In order to obtain the long time series pasture yield data, this paper estimates the pasture yield of the pasture growing season (May-August) of the five flags of Hulunbuir City pastoralism from 2001 to 2020 based on CASA model using geographic information and remote sensing technology, and verifies the accuracy of the simulated yield data with the measured yield data from the ecological observatory of each flag of pastoralism, respectively. In this study, the basic principles and model framework of CASA model were firstly explained, and two key parameters for estimating pasture yield in CASA model were introduced: photosynthetically active radiation absorbed by vegetation and actual light energy utilization rate. The photosynthetically active radiation absorbed by vegetation was determined by the ratio of total solar radiation and plant photosynthetically active radiation absorption, and the actual light energy utilization was determined by the temperature stress factor, moisture stress factor, and maximum light energy utilization, and the NPP of the growing season of forage grass in the five flags of pastoral industry in Hulunbuir City from 2001 to 2020 was finally calculated. Based on the year-by-year land-cover data of Hulunbuir area from 2001 to 2020, the NPP of the growing season of pasture grass was extracted. Grassland land was extracted, and the yearly average NPP of the pasture growing season (May-August) in the five banners of pastoralism was extracted by spatial statistical analysis, and then converted into pasture yield. The correlation coefficient,
[1] | 郭新雅. 草原保险的风险区划、产品类型选择及费率厘定研究[D]: [博士学位论文]. 呼和浩特: 内蒙古农业大学, 2021. |
[2] | 朱文泉, 潘耀忠, 张锦水. 中国陆地植被净初级生产力遥感估算[J]. 植物生态学报, 2007(3): 413-424. |
[3] | 龙慧灵, 李晓兵, 王宏, 魏丹丹, 张程. 内蒙古草原区植被净初级生产力及其与气候的关系[J]. 生态学报, 2010, 30(5): 1367-1378. |
[4] | 林慧龙, 常生华, 李飞. 草地净初级生产力模型研究进展[J]. 草业科学, 2007(12): 26-29. |
[5] | Running, S.W., Queen, L. and Thornton, M. (2000) The Earth Observing System and Forest Management. Journal of Forestry, 98, 29-31. https://doi.org/10.1093/jof/98.6.29 |
[6] | Potter, C.S., Randerson, J.T., Field, C.B., Matson, P.A., Vitousek, P.M., Mooney, H.A., et al. (1993) Terrestrial Ecosystem Production: A Process Model Based on Global Satellite and Surface Data. Global Biogeochemical Cycles, 7, 811-841. https://doi.org/10.1029/93gb02725 |
[7] | Field, C.B., Randerson, J.T. and Malmström, C.M. (1995) Global Net Primary Production: Combining Ecology and Remote Sensing. Remote Sensing of Environment, 51, 74-88. https://doi.org/10.1016/0034-4257(94)00066-v |
[8] | Ruimy, A., Saugier, B. and Dedieu, G. (1994) Methodology for the Estimation of Terrestrial Net Primary Production from Remotely Sensed Data. Journal of Geophysical Research: Atmospheres, 99, 5263-5283. https://doi.org/10.1029/93jd03221 |
[9] | Lobell, D.B., Asner, G.P., Ortiz-Monasterio, J.I. and Benning, T.L. (2003) Remote Sensing of Regional Crop Production in the Yaqui Valley, Mexico: Estimates and Uncertainties. Agriculture, Ecosystems & Environment, 94, 205-220. https://doi.org/10.1016/s0167-8809(02)00021-x |
[10] | 朴世龙, 方精云, 郭庆华. 利用CASA模型估算我国植被净第一性生产力[J]. 植物生态学报, 2001(5): 603-608+644. |
[11] | 李贵才. 基于MODIS数据和光能利用率模型的中国陆地净初级生产力估算研究[D]: [博士学位论文]. 北京: 中国科学院研究生院(遥感应用研究所), 2004. |
[12] | 朱文泉, 潘耀忠, 龙中华, 陈云浩, 李京, 扈海波. 基于GIS和RS的区域陆地植被NPP估算——以中国内蒙古为例[J]. 遥感学报, 2005(3): 300-307. |
[13] | 杨勇, 李兰花, 王保林, 宋向阳, 刘爱军, 王明玖. 基于改进的CASA模型模拟锡林郭勒草原植被净初级生产力[J]. 生态学杂志, 2015, 34(8): 2344-2352. |
[14] | Zhao, F., Xu, B., Yang, X., Jin, Y., Li, J., Xia, L., et al. (2014) Remote Sensing Estimates of Grassland Aboveground Biomass Based on MODIS Net Primary Productivity (NPP): A Case Study in the Xilingol Grassland of Northern China. Remote Sensing, 6, 5368-5386. https://doi.org/10.3390/rs6065368 |
[15] | Yang, J. and Huang, X. (2021) The 30 M Annual Land Cover Dataset and Its Dynamics in China from 1990 to 2019. Earth System Science Data, 13, 3907-3925. https://doi.org/10.5194/essd-13-3907-2021 |
[16] | Zhao, J., Wang, J., Jin, Y., Fan, L., Xu, C., Liang, D., et al. (2018) Land Cover Based Landscape Pattern Dynamics of Anhui Province Using Globcover and MCD12Q1 Global Land Cover Products. Sustainability, 10, Article No. 1285. https://doi.org/10.3390/su10041285 |
[17] | 沈贝贝, 丁蕾, 李振旺, 辛晓平, 徐大伟, 朱晓昱, 王旭, 陈宝瑞. 呼伦贝尔草原净初级生产力时空变化及气候响应分析[J]. 草业学报, 2019, 28(5): 1-14. |
[18] | Steffen, W., Noble, I., Canadell, J., Apps, M., Schulze, E. and Jarvis, P.G. (1998) The Terrestrial Carbon Cycle: Implications for the Kyoto Protocol. Science, 280, 1393-1394. https://doi.org/10.1126/science.280.5368.1393 |
[19] | 童成立, 张文菊, 汤阳, 王洪庆. 逐日太阳辐射的模拟计算[J]. 中国农业气象, 2005(3): 165-169. |
[20] | 赵芬. 基于CASA模型的锡林郭勒盟草地净初级生产力遥感估算与验证[D]: [硕士学位论文]. 北京: 中国农业科学院, 2015. |
[21] | 周广胜, 张新时. 全球变化的中国气候-植被分类研究[J]. 植物学报, 1996(1): 8-17. |
[22] | 彭少麟, 郭志华, 王伯荪. 利用GIS和RS估算广东植被光利用率[J]. 生态学报, 2000(6): 903-909. |
[23] | 朱文泉, 潘耀忠, 何浩, 于德永, 扈海波. 中国典型植被最大光利用率模拟[J]. 科学通报, 2006(6): 700-706. |