全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

高强高刚轻量化端板多参数结构设计方法研究
Research on Multi-Parameter Structural Design Method for High-Strength, High-Stiffness, Lightweight End Plates

DOI: 10.12677/mos.2025.141088, PP. 969-981

Keywords: 端板,端板厚度,槽钢数量和布局,静力学分析
End Plate
, End Plate Thickness, Number and Layout of Channel Steels, Static Analysis

Full-Text   Cite this paper   Add to My Lib

Abstract:

随着新能源需求的持续增长和可再生能源技术的迅猛发展,储能电池的应用日益广泛。储能电池的安全性能在安装和运输过程中的表现尤为关键,因此,设计高性能的结构部件成为提升系统安全性和可靠性的研究热点。为了提高储能电池在安装和运输过程中的安全性能,本文针对一种可以装配在储能电池的外部端板通过Ansys Workbench平台开展了一系列的静力学分析。具体而言本文通过改变端板的材料、厚度、槽钢数量和布局、载荷及受力面积,对端板结构变形特性的影响进行了系统研究。研究结果表明,添加槽钢显著增强了结构的整体强度和刚度,能够有效减少弯曲和变形,特别是在承载较大电池模块重量时。两对或三对槽钢在保持合理重量的同时提供了较好的抗变形能力,而槽钢的布局间距对整体强度也起到关键影响。此外,端板厚度的增加对减小变形起到了明显的作用,变形量随着厚度增加呈现非线性下降趋势;受力区域越大,配备两对或三对槽钢的端板在变形程度上的差异更小,表明优化端板结构设计是增强整体强度的有效手段。为储能电池盖板的设计提供了新的思路和方法,对于提高储能系统的整体性能具有重要意义。
With the continuous growth in demand for new energy and the rapid development of renewable energy technologies, the application of energy storage batteries has become increasingly widespread. The safety performance of energy storage batteries during installation and transportation is particularly critical, making the design of high-performance structural components a research focus for improving system safety and reliability. To enhance the safety performance of energy storage batteries during installation and transportation, this study conducted a series of static analyses on an external end plate that can be installed on energy storage batteries using the Ansys Workbench platform. Specifically, the effects of various parameters, including the material, thickness, number and layout of channel steels, applied load, and load-bearing area, on the deformation characteristics of the end plate structure were systematically investigated. The results show that adding channel steels significantly improves the overall strength and stiffness of the structure, effectively reducing bending and deformation, especially under the weight of larger battery modules. Two or three pairs of channel steels strike a balance between maintaining reasonable weight and providing good anti-deformation capacity, while the spacing of the channel steels plays a crucial role in determining the overall structural strength. Furthermore, increasing the thickness of the end plate effectively reduces deformation, with the deformation showing a nonlinear decrease as thickness increases. As the load-bearing area increases, the difference in deformation between end plates equipped with two and three pairs of channel steels becomes smaller, highlighting that optimizing the structural design of end plates is an effective approach to enhancing overall strength. This study provides new insights and methods for the design of energy storage battery end plates, which are of great significance for improving the overall performance of

References

[1]  朱文韬杨, 徐艺敏, 等. 电池储能技术在新能源发电系统中的应用与优化[J]. 储能科学与技术, 2024, 13(8): 2737-2739.
[2]  高大威, 付静江, 王聪昌, 等. 纯电动车动力电池包结构轻量化设计[J]. 公路交通科技, 2023, 40(6): 203-210.
[3]  Sharaf, O.Z. and Orhan, M.F. (2014) An Overview of Fuel Cell Technology: Fundamentals and Applications. Renewable and Sustainable Energy Reviews, 32, 810-853.
https://doi.org/10.1016/j.rser.2014.01.012
[4]  郭宝圣. 车载制氢式燃料电池电动汽车混合动力系统设计与研究[D]: [硕士学位论文]. 杭州: 浙江大学, 2015.
[5]  王治颖, 金大鹏, 唐亚洲. 新型轻量化燃料电池电堆端板的设计与研究[J]. 电气时代, 2023(S1): 103-107.
[6]  张智明, 商亚鹏, 张娟楠, 等. 钢带捆扎燃料电池电堆端板尺寸和形状优化[J]. 同济大学学报(自然科学版), 2017, 45(4): 575-581.
[7]  刘志伟, 杨海玉, 胡杨月. 燃料电池堆力学结构研究与端板设计优化[J]. 东方电气评论, 2015, 29(2): 8-14.
[8]  岑波, 周攀峰, 胡为松. 基于有限元仿真的动力电池包机械性能分析[J]. 电源技术, 2020, 44(8): 1173-1176.
[9]  Dai, Z., Miao, Q. and Wu, D. (2024) Data Simulation of the Impact of Ball Strikes on the Bottom of Electric Vehicle Battery Packs Based on Finite Element Analysis. Thermal Science and Engineering Progress, 53, Article ID: 102757.
https://doi.org/10.1016/j.tsep.2024.102757
[10]  徐珂, 张继阳, 王英姿. 基于CAE技术的新能源储能电池箱结构强度研究[J]. 河南工学院学报, 2021, 29(5): 30-32+45.
[11]  王翠竹, 潘发兴. Q235和Q345材料的异型管弯曲成型质量的仿真研究[J]. 模具技术, 2024(1): 71-79.
[12]  吕建国, 康士廷. ANSYS Workbench 14有限元分析自学手册[M]. 北京: 人民邮电出版社, 2013.
[13]  刘斯顺, 刘月学, 郭锋. 基于Ansys Workbench电池组结构仿真分析[J]. 蓄电池, 2022, 59(1): 32-40.
[14]  罗镇雄, 高良, 何达新, 等. 空调室外机顶盖结构参数优化设计[J]. 家电科技, 2022(S1): 446-450.
[15]  白聪儿, 汪小芳, 黄文强, 等. 基于OptiStruct的储能电池包运输条件下的结构安全分析与优化[J]. 机电工程技术, 2023, 52(10): 207-210.
[16]  李明秋. 电池包箱体的有限元分析和结构优化设计[D]: [硕士学位论文]. 长春: 吉林大学, 2017.
[17]  熊可辉, 陈杨杨. 基于HUPERWORK的燃料电池端板结构拓扑优化分析[J]. 建模与仿真, 2024, 13(1), 643-648.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133