全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于高斯混合模型案例的EM算法教学设计
Teaching Design of EM Algorithm Based on Gaussian Mixture Model Case

DOI: 10.12677/ces.2025.131053, PP. 394-402

Keywords: EM算法,高斯混合模型,教学设计
EM Algorithm
, Gaussian Mixture Model, Teaching Design

Full-Text   Cite this paper   Add to My Lib

Abstract:

EM (Expectation Maximization)算法是统计学中的核心算法,也是本校近代数理统计课程教学过程中的一个重难点。论文采用案例式、启发式、研讨式教学方法,以基于高斯混合模型(GMM)的轴承退化阶段划分问题为例,引导学生发现隐变量模型极大似然估计(MLE)存在的困难,设计问题链启发学生探寻参数估计的数值方法,并总结出EM算法的一般过程。基于matlab编程可视化EM算法下的GMM模型参数更新过程,对比MLE目标函数和EM迭代目标函数,分析EM算法的内涵思想并结合图形进行直观展示,并且挖掘其中蕴含的思政元素,在知识传授的同时实现价值塑造。
Expectation maximization (EM) algorithm is a core algorithm in statistics and also a key and difficult point in the teaching process of modern mathematical statistics courses in our school. The paper adopts a case-based and heuristic teaching method, taking the Gaussian Mixture Model (GMM) based bearing degradation stage division problem as an example, guiding students to discover the difficulties of maximum likelihood estimation (MLE) in the latent variable model, designing a problem chain to inspire students to explore numerical methods for parameter estimation, and summarizing the general process of EM algorithm. Based on Matlab programming, the parameter update process of GMM based on EM algorithm is visualized. Comparing the MLE objective function and EM iteration objective function, the intrinsic thought of EM algorithm is analyzed and visually displayed with graphics. The ideological and political elements are also explored, so as to achieve value shaping while knowledge transmission.

References

[1]  赵慎, 王红云, 郭希维, 张自宾. 军校研究生教育应用型培养模式探讨[J]. 中国教育技术装备, 2018(22): 92-93+98.
[2]  安涛, 张腾, 何宇廷. 聚焦备战打仗型军校研究生培养模式的探索与实践[J]. 大学教育, 2024(14): 111-114.
[3]  肖枝洪, 黄守成. 人工智能时代下研究生应用数理统计优质课程建设[J]. 大学数学, 2024, 40(2): 41-46.
[4]  宫春梅. 基于创新能力培养的研究生《数理统计》课程教学研究[J]. 创新创业理论研究与实践, 2020(16): 25-26.
[5]  Dempster, A.P., Laird, N.M. and Rubin, D.B. (1977) Maximum Likelihood from Incomplete Data via the EM Algorithm. Journal of the Royal Statistical Society Series B: Statistical Methodology, 39, 1-22.
https://doi.org/10.1111/j.2517-6161.1977.tb01600.x
[6]  陈东楠, 胡昌华, 郑建飞, 郑红倩, 裴洪. 基于一种新型健康指标的轴承退化阶段自适应划分方法[J]. 哈尔滨工程大学学报, 2025(9): 1-13.
[7]  茆诗松, 王静龙, 濮晓龙. 高等数理统计[M]. 第3版. 北京: 高等教育出版社, 2022.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133