|
基于深度学习的智能网联汽车无人驾驶障碍物检测研究
|
Abstract:
在智能网联汽车技术领域,由于无人驾驶技术的飞速进步,障碍物识别技术已经变成了确保驾驶安全的核心环节。这项研究成功地开发了一个基于深度学习技术的障碍物检测系统,该系统是基于精心构建的卷积神经网络(CNN)框架,并融合了多种传感器的数据信息,以期达到有效,准确地识别多变道路环境下障碍物。通过试验数据验证,本系统无论从辨识的精度,响应速度还是稳定性上都超过传统方法,从而为无人驾驶技术发展提供坚实技术支撑。
In the field of intelligent connected vehicle technology, due to the rapid advancement of autonomous driving technology, obstacle detection has become a crucial aspect of ensuring driving safety. This study successfully developed an obstacle detection system based on deep learning technology. This system is built upon a meticulously constructed Convolutional Neural Network (CNN) framework and integrates data from multiple sensors to effectively and accurately identify obstacles in diverse road environments. Experimental data validation has shown that this system surpasses traditional methods in terms of recognition accuracy, response speed, and stability, thereby providing solid technical support for the development of autonomous driving technology.
[1] | 王安娜, 王文慧, 刘璟璐. 一种基于深度学习的无人驾驶物流车[P]. 中国, CN201710146233.6. 2017-06-20. |
[2] | 侍欢迎, 王康, 张晴. 一种基于深度学习的无人驾驶系统及方法[P]. 中国, CN201910464026.4. 2024-11-11. |
[3] | 邹斌, 王思信, 颜莉蓉, 等. 无人驾驶车辆基于语义分割方法障碍物检测[J]. 广西大学学报(自然科学版), 2019, 44(6): 1667-1674. |
[4] | 冯谢星. 面向深度神经网络的数据增强和优化方法研究[D]: [博士学位论文]. 长沙: 湖南大学, 2020. |
[5] | 戴雷燕. 基于深度学习的目标检测优化算法研究及嵌入式计算平台应用[D]: [硕士学位论文]. 杭州: 浙江理工大学, 2020. |
[6] | Erkan, U., Thanh, D.N.H., Hieu, L.M. and Enginoglu, S. (2019) An Iterative Mean Filter for Image Denoising. IEEE Access, 7, 167847-167859. https://doi.org/10.1109/access.2019.2953924 |
[7] | Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., et al. (2020) Generative Adversarial Networks. Communications of the ACM, 63, 139-144. https://doi.org/10.1145/3422622 |
[8] | Yang, S. and Bai, H. (2020) Research on the Application of Double Conditional General Advantage Nets (DCGAN) to Generate Simple Background Image with Specified Hue. Journal of Physics: Conference Series, 1486, Article ID: 022044. https://doi.org/10.1088/1742-6596/1486/2/022044 |
[9] | He, J., Wang, C., Jiang, D., Li, Z., Liu, Y. and Zhang, T. (2020) CycleGAN with an Improved Loss Function for Cell Detection Using Partly Labeled Images. IEEE Journal of Biomedical and Health Informatics, 24, 2473-2480. https://doi.org/10.1109/jbhi.2020.2970091 |
[10] | Yang, Y., Zhang, J., Li, Y., Tian, L., Bai, L. and Li, Q. (2021) Gan-Based Method with Small Training Samples for Defect Detection Using Magneto-Optical Image. 2021 CAA Symposium on Fault Detection, Supervision, and Safety for Technical Processes (SAFEPROCESS), Chengdu, 17-18 December 2021, 1-4. https://doi.org/10.1109/safeprocess52771.2021.9693642 |