全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

具有非线性广义源项和应力项的变系数波动方程解的整体存在性与不存在性
The Global Existence and Nonexistence of Solutions for the Variable Coefficient Wave Equation with Nonlinear Generalized Source Term and Stress Term

DOI: 10.12677/aam.2025.141015, PP. 112-125

Keywords: 非线性变系数波动方程,应力项,解的整体存在性,解的爆破
Nonlinear Variable Coefficient Wave Equation
, Stress Term, Global Existence for Solutions, Blow-Up

Full-Text   Cite this paper   Add to My Lib

Abstract:

本文主要研究了一类含应力项的非线性变系数波动方程在不同能级下解的整体存在性及其爆破行为。基于泛函估计方法,构建了位势井框架,并在此基础上给出了次临界能级下解全局存在的条件及其解的爆破时间估计。同时,还探讨了临界能级下全局解存在的条件。
This paper mainly studies the existence of global solutions and the blow-up behavior for a class of nonlinear variable coefficient wave equations with stress term under different energy levels. Based on functional estimates, the potential well framework is constructed, and the conditions for the existence of global solutions and blow-up time under subcritical energy levels are provided. Additionally, the conditions for the existence of global solutions at the critical energy level are discussed.

References

[1]  Guowang, C. and Zhijian, Y. (2000) Existence and Non-Existence of Global Solutions for a Class of Non-Linear Wave Equations. Mathematical Methods in the Applied Sciences, 23, 615-631.
https://doi.org/10.1002/(sici)1099-1476(20000510)23:7<615::aid-mma133>3.0.co;2-e
[2]  Yang, Z.J. (2003) Global Existence, Asymptotic Behavior and Blowup of Solutions for a Class of Nonlinear Wave Equations with Dissipative Term. Journal of Differential Equations, 187, 520-540.
https://doi.org/10.1016/s0022-0396(02)00042-6
[3]  Esquivel-Avila, J.A. (2005) Dynamics around the Ground State of a Nonlinear Evolution Equation. Nonlinear Analysis: Theory, Methods & Applications, 63, e331-e343.
https://doi.org/10.1016/j.na.2005.02.108
[4]  Liu, Y. and Xu, R. (2007) Fourth Order Wave Equations with Nonlinear Strain and Source Terms. Journal of Mathematical Analysis and Applications, 331, 585-607.
https://doi.org/10.1016/j.jmaa.2006.09.010
[5]  Wang, Y. and Wang, Y. (2013) On the Initial-Boundary Problem for Fourth Order Wave Equations with Damping, Strain and Source Terms. Journal of Mathematical Analysis and Applications, 405, 116-127.
https://doi.org/10.1016/j.jmaa.2013.03.060
[6]  Lin, Q., Shen, J. and Wang, X. (2020) Critical and Sup-Critical Initial Energy Finite Time Blowup Phenomena for the Fourth-Order Wave Equations with Nonlinear Strain Term. Nonlinear Analysis, 198, Article ID: 111873.
https://doi.org/10.1016/j.na.2020.111873
[7]  Han, J., Xu, R. and Yang, Y. (2021) Asymptotic Behavior and Finite Time Blow up for Damped Fourth Order Nonlinear Evolution Equation. Asymptotic Analysis, 122, 349-369.
https://doi.org/10.3233/asy-201621
[8]  Yu, J. and Di, H. (2023) Variable-coefficient Viscoelastic Wave Equation with Acoustic Boundary Conditions: Global Existence, Blowup and Energy Decay Rates. Banach Journal of Mathematical Analysis, 17, Article No. 68.
https://doi.org/10.1007/s43037-023-00292-z
[9]  Lian, W., Rădulescu, V.D., Xu, R., Yang, Y. and Zhao, N. (2019) Global Well-Posedness for a Class of Fourth-Order Nonlinear Strongly Damped Wave Equations. Advances in Calculus of Variations, 14, 589-611.
https://doi.org/10.1515/acv-2019-0039
[10]  Wu, Y. and Xue, X. (2014) Decay Rate Estimates for a Class of Quasilinear Hyperbolic Equations with Damping Terms Involving p-Laplacian. Journal of Mathematical Physics, 55, Article ID: 121504.
https://doi.org/10.1063/1.4904484
[11]  Ghegal, S., Hamchi, I. and Messaoudi, S.A. (2018) Global Existence and Stability of a Nonlinear Wave Equation with Variable-Exponent Nonlinearities. Applicable Analysis, 99, 1333-1343.
https://doi.org/10.1080/00036811.2018.1530760
[12]  杨延冰. 几类非线性Boussinesq系统的定性研究[D]: [博士学位论文]. 哈尔滨: 哈尔滨工程大学, 2015.
[13]  徐润章, 杨延冰. 非线性发展方程的初值依赖问题[M]. 北京: 科学出版社, 2017.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133