全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

靶向高通量测序技术及其在感染性疾病中的应用价值
Targeted High-Throughput Sequencing Technology and Its Application Value in Infectious Diseases

DOI: 10.12677/acm.2025.151155, PP. 1165-1170

Keywords: 靶向高通量测序,传统病原学诊断,感染性疾病,检测性能
Infectious Diseases
, Traditional Etiological Diagnosis, Targeted High-Throughput Sequencing

Full-Text   Cite this paper   Add to My Lib

Abstract:

全球公共卫生领域的重大威胁之一的感染性疾病,是指主要由病原微生物引发所导致的疾病的统称。传统的病原学检测方法如体外高通量测序技术、质谱法、形态学、免疫相关的抗原抗体检测,以及经典的分离培养与鉴定,仍然是诊断感染性疾病广泛应用的重要手段,但已无法满足临床对快速精准诊断和高效对症治疗的需求。病原靶向高通量测序技术(tNGS)针对特定病原微生物的基因序列设计特异性引物,利用超多重PCR建库体系对目标序列进行靶向正向扩增和富集,之后进行靶向高通量测序。与常规感染性疾病检测技术相比,tNGS的创新之处在于实现了广谱精准的病原检测。当前,国内外的研究主要聚焦于tNGS在呼吸道感染病原体诊断方面的应用。然而,tNGS的潜力并不仅限于此,它同样可以被有效地应用于其他类型的系统性感染,例如中枢神经系统感染等。本文综述了近年来国内外关于tNGS在感染性疾病精准诊断应用的进展,以及其在检测效能、优势和局限性方面的讨论,以确保tNGS在临床疾病诊断中能够得到合理应用。
One of the significant global public health threats is infectious diseases, which are essentially disorders mainly triggered by pathogenic microorganisms. Traditional pathogen detection approaches, such as high-throughput sequencing techniques, mass spectrometry, morphology, antigen-antibody detection, and the classic isolation and identification, remain crucial means for diagnosing infectious diseases. Nevertheless, they fail to fulfill the clinical requirements for rapid, precise diagnosis and efficient targeted treatment. The principle of targeted next-generation sequencing (tNGS) for infectious diseases involves combining multiple polymerase chain reaction (PCR) with second-generation sequencing technology. This technology targets specific gene sequences of pathogenic microorganisms by designing specific primers and utilizes a multi-target PCR library construction system to carry out targeted forward amplification and enrichment of the target sequences. In comparison with conventional infectious disease detection technologies, the novelty of tNGS lies in achieving extensive and precise pathogen detection. Currently, research both domestically and internationally is primarily concentrated on the application of tNGS in the diagnosis of respiratory infection pathogens. However, the potential of tNGS is not restricted to this; it can also be effectively applied to other types of systemic infections, like central nervous system infections. This review summarizes the recent advancements of tNGS in the precise diagnosis of infectious diseases at home and abroad, along with discussions on its detection efficiency, advantages, and limitations, to guarantee the rational application of tNGS in clinical disease diagnosis.

References

[1]  McKee, H. (1907) A New Pathogenic Microörganism of the Conjunctival Sac. The Journal of Medical Research, 16, 527-535.
[2]  Ferrari, A.J., Santomauro, D.F., Aali, A., Abate, Y.H., Abbafati, C., Abbastabar, H., et al. (2024) Global Incidence, Prevalence, Years Lived with Disability (YLDs), Disability-Adjusted Life-Years (DALYs), and Healthy Life Expectancy (HALE) for 371 Diseases and Injuries in 204 Countries and Territories and 811 Subnational Locations, 1990-2021: A Systematic Analysis for the Global Burden of Disease Study 2021. The Lancet, 403, 2133-2161.
https://doi.org/10.1016/s0140-6736(24)00757-8
[3]  Poritz, M.A., Blaschke, A.J., Byington, C.L., Allen, L., Nilsson, K., Jones, D.E., et al. (2011) Filmarray, an Automated Nested Multiplex PCR System for Multi-Pathogen Detection: Development and Application to Respiratory Tract Infection. PLOS ONE, 6, e26047.
https://doi.org/10.1371/journal.pone.0026047
[4]  Lagier, J., Edouard, S., Pagnier, I., Mediannikov, O., Drancourt, M. and Raoult, D. (2015) Current and Past Strategies for Bacterial Culture in Clinical Microbiology. Clinical Microbiology Reviews, 28, 208-236.
https://doi.org/10.1128/cmr.00110-14
[5]  Mitchell, S.L. and Simner, P.J. (2019) Next-generation Sequencing in Clinical Microbiologyy: Are We There Yet? Clinics in Laboratory Medicine, 39, 405-418.
https://doi.org/10.1016/j.cll.2019.05.003
[6]  Onda, Y., Takahagi, K., Shimizu, M., Inoue, K. and Mochida, K. (2018) Multiplex PCR Targeted Amplicon Sequencing (MTA-Seq): Simple, Flexible, and Versatile SNP Genotyping by Highly Multiplexed PCR Amplicon Sequencing. Frontiers in Plant Science, 9, Article 201.
https://doi.org/10.3389/fpls.2018.00201
[7]  Wilson, M.R., Naccache, S.N., Samayoa, E., Biagtan, M., Bashir, H., Yu, G., et al. (2014) Actionable Diagnosis of Neuroleptospirosis by Next-Generation Sequencing. New England Journal of Medicine, 370, 2408-2417.
https://doi.org/10.1056/nejmoa1401268
[8]  Shen, M., Li, Q., Zeng, Z., Han, D. and Luo, X. (2023) Mucor Indicus Caused Disseminated Infection Diagnosed by Metagenomic Next-Generation Sequencing in an Acute Myeloid Leukemia Patient: A Case Report. Frontiers in Cellular and Infection Microbiology, 13, Article 1089196.
https://doi.org/10.3389/fcimb.2023.1089196
[9]  张安兵, 袁小玲, 夏秀琼, 等. 宏基因二代测序对结缔组织病并发免疫抑制宿主肺炎患者的病原学分析[J]. 临床肺科杂志, 2022, 27(8): 1229-1233.
[10]  韩思雨. 宏基因组二代测序在疑难感染性疾病中的临床应用价值[J]. 中国当代儿科杂志, 2022, 24(2): 210-215.
[11]  谢平, 张昆仑, 陈彩萍. 肺泡灌洗液二代测序诊断耶氏肺孢子菌肺炎1例[J]. 中国感染与化疗杂志, 2021, 21(6): 734-736.
[12]  Alangaden, G.J. (2011) Nosocomial Fungal Infections: Epidemiology, Infection Control, and Prevention. Infectious Disease Clinics of North America, 25, 201-225.
https://doi.org/10.1016/j.idc.2010.11.003
[13]  Zhan, Y., Xu, T., He, F., Guan, W., Li, Z., Li, S., et al. (2021) Clinical Evaluation of a Metagenomics-Based Assay for Pneumonia Management. Frontiers in Microbiology, 12, Article 751073.
https://doi.org/10.3389/fmicb.2021.751073
[14]  马彩霞, 陈镜龙, 陆泳, 等. 肺泡灌洗液宏基因组测序在儿童重症肺炎支原体肺炎混合感染中的诊断价值[J]. 临床儿科杂志, 2020, 38(12): 891-895.
[15]  Li, H. (2022) Editorial: mNGS for Fungal Pulmonary Infection Diagnostics. Frontiers in Cellular and Infection Microbiology, 12, Article 864163.
https://doi.org/10.3389/fcimb.2022.864163
[16]  Murphy, S.G., Smith, C., Lapierre, P., Shea, J., Patel, K., Halse, T.A., et al. (2023) Direct Detection of Drug-Resistant Mycobacterium tuberculosis Using Targeted Next Generation Sequencing. Frontiers in Public Health, 11, Article 1206056.
https://doi.org/10.3389/fpubh.2023.1206056
[17]  Chen, H., Yin, Y., Gao, H., Guo, Y., Dong, Z., Wang, X., et al. (2020) Clinical Utility of In-House Metagenomic Next-Generation Sequencing for the Diagnosis of Lower Respiratory Tract Infections and Analysis of the Host Immune Response. Clinical Infectious Diseases, 71, S416-S426.
https://doi.org/10.1093/cid/ciaa1516
[18]  Yang, L., Song, J., Wang, Y. and Feng, J. (2021) Metagenomic Next-Generation Sequencing for Pulmonary Fungal Infection Diagnosis: Lung Biopsy versus Bronchoalveolar Lavage Fluid. Infection and Drug Resistance, 14, 4333-4359.
https://doi.org/10.2147/idr.s333818
[19]  Granerod, J., Tam, C.C., Crowcroft, N.S., Davies, N.W.S., Borchert, M. and Thomas, S.L. (2010) Challenge of the Unknown: A Systematic Review of Acute Encephalitis in Non-Outbreak Situations. Neurology, 75, 924-932.
https://doi.org/10.1212/wnl.0b013e3181f11d65
[20]  Li, J., Zhang, L., Yang, X., Wang, P., Feng, L., Guo, E., et al. (2023) Diagnostic Significance of Targeted Next-Generation Sequencing in Central Nervous System Infections in Neurosurgery of Pediatrics. Infection and Drug Resistance, 16, 2227-2236.
https://doi.org/10.2147/idr.s404277
[21]  Zhang, H., Dai, X., Hu, P., Tian, L., Li, C., Ding, B., et al. (2024) Comparison of Targeted Next-Generation Sequencing and the Xpert MTB/RIF Assay for Detection of Mycobacterium tuberculosis in Clinical Isolates and Sputum Specimens. Microbiology Spectrum, 12, e0409823.
https://doi.org/10.1128/spectrum.04098-23
[22]  Li, J., Zhou, C., Wei, S., Wang, L., Shi, M., Sun, C., et al. (2022) Diagnostic Value of Metagenomic Next-Generation Sequencing for Pneumonia in Immunocompromised Patients. Canadian Journal of Infectious Diseases and Medical Microbiology, 2022, Article ID: 5884568.
https://doi.org/10.1155/2022/5884568
[23]  Yue, R., Wu, X., Li, T., Chang, L., Huang, X. and Pan, L. (2021) Early Detection of Legionella Pneumophila and Aspergillus by mNGS in a Critically Ill Patient with Legionella Pneumonia after Extracorporeal Membrane Oxygenation Treatment: Case Report and Literature Review. Frontiers in Medicine, 8, Article 686512.
https://doi.org/10.3389/fmed.2021.686512
[24]  Huang, S., Qiu, J., Li, S., Ma, Y., He, J., Han, L., et al. (2024) Microbial Signatures Predictive of Short-Term Prognosis in Severe Pneumonia. Frontiers in Cellular and Infection Microbiology, 14, Article 1397717.
https://doi.org/10.3389/fcimb.2024.1397717

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133