|
“双减”背景下湖南中考数学试题综合难度的比较研究——以2022~2024年湖南省中考数学试卷为例
|
Abstract:
借助综合难度模型,选取2022~2024年湖南省中考数学试题,从背景、知识与技能、运算、推理、认知和表征水平六个维度对试题进行比较,统筹总体综合难度系数,进而得到四套试题的变化差异:关联背景和复杂符号运算的题目所占比例均偏低;而知识与技能的各个水平层次之间的占比存在较大差异;推理与认知水平维度的各个水平层次占比也呈现出不均衡的特点;此外,综合难度系数方面也存在一定的差异性。由此提出建议:适当增加情境性背景试题,培养跨学科的应用意识;提高开放性试题比例,注重与学科思政的有机融合;依照课程标准命题,科学设置数学试题综合难度。
With the help of the comprehensive difficulty model, select the math questions 2022~2024 Hunan Province high school entrance exam math questions, compare the test questions from six dimensions of background, knowledge and skill, operation, reasoning, cognition, and representation level, coordinate the overall comprehensive difficulty coefficient and get the differences of the four sets of questions: the proportion of questions with background and complex symbol operation is low; the proportion between knowledge and skill is quite different; the proportion of reasoning and cognition is also unbalanced; moreover, there are some differences in the comprehensive difficulty coefficient. Therefore, the relevant suggestions are put forward: appropriately enhance the situation of the test background and cultivate students’ cross-disciplinary application consciousness; maintain the overall comprehensive difficulty and promote the construction of students’ knowledge context system; appropriately increase the proportion of open test questions and pay attention to the organic integration with the ideological and political discipline; scientifically set the comprehensive difficulty of mathematics test questions according to the curriculum standard proposition.
[1] | 中国政府网. 中共中央办公厅 国务院办公厅印发《关于进一步减轻义务教育阶段学生作业负担和校外培训负担的意见》[EB/OL]. https://www.gov.cn/zhengce/2021-07/24/content_5627132.htm, 2022-08-31. |
[2] | 湖南省教育厅. 权威解读湖南中考改革: 全省统一中考, 长沙为何单独命题[EB/OL]. https://www.hunan.gov.cn/hnszf/hnyw/bmdt/202307/t20230712_29398885.html, 2023-07-12. |
[3] | 张春祥, 王燕. 湖南中考统一命题, 影响几何[N]. 湖南日报, 2023-06-25(002). |
[4] | 鲍建生. 中英两国初中数学期望课程综合难度的比较[J]. 全球教育展望, 2002, 31(9): 48-52. |
[5] | 陈志辉. 中美两国初中数学课程的问题情境水平比较研究——以“函数”内容为例[J]. 数学教育学报, 2016, 25(1): 5-9. |
[6] | 张怡, 武小鹏, 彭乃霞. 综合难度系数模型在2016年高考数学试题评价中的应用[J]. 教育测量与评价, 2016(12): 47-53. |
[7] | 武小鹏, 孔企平. 基于AHP理论的数学高考试题综合难度模型构建与应用[J]. 数学教育学报, 2020, 29(2): 29-34. |
[8] | 文尚平, 杨璧华. 基于综合难度系数模型的高考数学试题评析——以2021-2023年全国甲卷为例[J]. 教育测量与评价, 2024(1): 97-112. |
[9] | 中华人民共和国教育部. 义务教育数学课程标准(2022年版) [S]. 北京: 北京师范大学出版社, 2022. |
[10] | 况微. 初中数学教材跨学科内容的比较研究[D]: [硕士学位论文]. 贵阳: 贵州师范大学,2024. |
[11] | 教育部考试中心. 中国高考评价体系说明[M]. 北京: 人民教育出版社, 2019: 40-41. |