全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Finance  2025 

多种机器学习方法在股票预测中的优势对比
Comparison of Advantages of Multiple Machine Learning Methods in Stock Prediction

DOI: 10.12677/fin.2025.151025, PP. 238-245

Keywords: 股票预测,机器学习,BP神经网络,极限学习机(ELM),长短期记忆网络(LSTM)
Stock Prediction
, Machine Learning, BP Neural Network, Extreme Learning Machine (ELM), Long Short-Term Memory Network (LSTM)

Full-Text   Cite this paper   Add to My Lib

Abstract:

股票价格的预测是金融领域的一个重要研究课题,随着机器学习技术的发展,各种模型在股票预测中的应用也越来越广泛。本文通过比较BP神经网络(BP)、极限学习机(ELM)和长短期记忆网络(LSTM)三种常见机器学习方法的表现,分析其在股票预测中的优劣。通过对比实验数据的均方误差(MSE)、均方根误差(RMSE)、平均绝对误差(MAE)、和决定系数(R2)等评价指标,本文验证了LSTM在处理时间序列数据方面的优势,特别是在股票价格预测的任务中表现出色,而BP神经网络和ELM各自具有特定场景下的应用价值。
Predicting stock prices is an important research topic in the field of finance, and with the development of machine learning technology, various models are increasingly being applied in stock price prediction. This paper compares the performance of three common machine learning methods, BP neural network (BP), extreme learning machine (ELM), and long short-term memory network (LSTM), to analyze their advantages and disadvantages in stock price prediction. By comparing the evaluation indicators such as mean square error (MSE), root mean square error (RMSE), average absolute error (MAE), and coefficient of determination (R2) of the experimental data, this paper verifies the advantage of LSTM in handling time series data, especially in the task of stock price prediction, and the excellent performance of LSTM in this task. Meanwhile, BP neural network and ELM each have their own application value in specific scenarios.

References

[1]  费振华. 基于机器学习的不平衡数据下个人信用评分预测模型研究[J]. 长江信息通信, 2024, 37(4): 112-114.
[2]  丁国辉, 刘宇琪, 王言开, 等. 基于翻转网络的低相关性序列数据预测研究[J]. 计算机工程, 2024, 50(2): 78-90.
[3]  孙晔, 武文华, 樊哲良, 等. 基于RBF神经网络的FPSO系泊力预测方法和原型应用[C]//中国海洋工程学会. 第十六届中国海洋(岸)工程学术讨论会论文集(上册). 2013: 7.
[4]  陈思文, 孔亚琪, 刘宇. 基于生成式人工智能的学业评价应用研究——以ChatGPT为例[J]. 软件工程, 2023, 26(10): 27-31.
[5]  刘兆建. 基于LSTM的网络流量预测方法研究[D]: [硕士学位论文]. 西安: 西安电子科技大学, 2023.
[6]  李楠, 刘豪, 闵亮. 基于BP神经网络的个性化跌倒检测研究[J]. 微型电脑应用, 2024, 40(6): 35-37+41.
[7]  Fischer, T. and Krauss, C. (2018) Deep Learning with Long Short-Term Memory Networks for Financial Market Predictions. European Journal of Operational Research, 270, 654-669.
https://doi.org/10.1016/j.ejor.2017.11.054
[8]  Zheng, Y., Liu, F. and Zhang, C. (2019) Stock Price Prediction Using LSTM Neural Network. Journal of Computational and Theoretical Nanoscience, 16, 2392-2397.
[9]  Chen, Y., Zhang, H. and Zhao, L. (2020) Stock Market Prediction Using a Hybrid Model Based on LSTM and GRU. Expert Systems with Applications, 139, Article ID: 112839.
[10]  Xu, J., Li, D. and Wu, H. (2022) Stock Price Prediction Using a Hybrid Model of CNN and LSTM. Applied Soft Computing, 114, Article ID: 108051.
[11]  贾秀燕, 孙秋霞, 李勍. 基于K-means聚类与PLS回归模型的交通速度短时预测[J]. 青岛大学学报(自然科学版), 2023, 36(1): 42-48+53.
[12]  李伟东, 张学军. 基于深度学习的股票价格预测模型研究[J]. 计算机科学与应用, 2020, 10(3): 198-205.
[13]  王建辉, 赵文博. 神经网络在股票市场预测中的应用综述[J]. 经济管理, 2021, 43(2): 102-109.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133