|
中温固体氧化物燃料电池钴基钙钛矿阴极材料研究进展
|
Abstract:
钴基钙钛矿阴极材料因其在结构稳定性、离子电导性和电催化活性方面的卓越表现,成为中温固体氧化物燃料电池(IT-SOFC)领域的研究热点。该类材料在测试温区内展现出高电导率和功率密度,然而,其较高的热膨胀系数(TEC)与电解质材料不匹配的问题限制了其应用。为解决这一问题,研究者们采取了掺杂改性和制备复合阴极两种方法。通过掺杂Nb、Ce、Cu等元素,有效降低了钴基钙钛矿阴极的热膨胀系数,同时保持了良好的电学性能。制备复合阴极则通过增大阴极三相界面的长度和提高催化活性,改善了热化学匹配性,降低了极化阻抗,提高了功率密度。本文综述了钴基钙钛矿和双钙钛矿阴极材料的研究进展,包括化学兼容性、热膨胀性能和电学性能等方面的表现,并提出了进一步优化掺杂元素和比例、制备高质量复合阴极材料等研究方向,以期提高钴基钙钛矿阴极材料的性能和SOFC的长期稳定性。未来,钴基钙钛矿阴极材料有望在SOFC领域发挥更加重要的作用。
Cobalt-based perovskite cathode materials have emerged as a research hotspot in the field of intermediate-temperature solid oxide fuel cells (IT-SOFCs) due to their exceptional structural stability, ionic conductivity, and electrocatalytic activity. These materials exhibit high conductivity and power density within the tested temperature range. However, their application is limited by the mismatch between their high thermal expansion coefficient (TEC) and that of electrolyte materials. To address this issue, researchers have adopted two approaches: doping modification and the preparation of composite cathodes. By doping with elements such as Nb, Ce, Cu, and others, the TEC of cobalt-based perovskite cathodes has been effectively reduced while maintaining good electrical properties. The preparation of composite cathodes improves thermochemical compatibility, reduces polarization impedance, and enhances power density by increasing the length of the cathode triple-phase boundary and improving catalytic activity. This paper reviews the research progress of cobalt-based perovskite and double perovskite cathode materials, including their chemical compatibility, thermal expansion properties, and electrical performance. It also proposes research directions for further optimizing doping elements and proportions, as well as preparing high-quality composite cathode materials, aiming to improve the performance of cobalt-based perovskite cathode materials and the long-term stability of SOFCs. In the future, cobalt-based perovskite cathode materials are expected to play a more significant role in the field of SOFCs.
[1] | 成业. 钙钛矿结构中温固体氧化物燃料电池阴极材料的性能研究[D]: [硕士学位论文]. 天津: 中国民航大学, 2017. |
[2] | Nakagawa, N., Sagara, H. and Kato, K. (2001) Catalytic Activity of Ni-YSZ-CeO2 Anode for the Steam Reforming of Methane in a Direct Internal-Reforming Solid Oxide Fuel Cell. Journal of Power Sources, 92, 88-94. https://doi.org/10.1016/s0378-7753(00)00508-5 |
[3] | 金芳军, 凌意瀚. 钙离子掺杂层状双钙钛矿作为固体氧化燃料电池阴极的性能[J]. 硅酸盐学报, 2023, 51(7): 1773-1782. |
[4] | 金芳军. 两类不同双钙钛矿结构中温固体氧化物燃料电池阴极材料的性能研究[D]: [博士学位论文]. 长春: 吉林大学, 2015. |
[5] | 王刚. 中温固体氧化物燃料电池钴基钙钛矿阴极材料BaCaCoFeNbO的性能研究[D]: [硕士学位论文]. 长春: 吉林大学, 2017. |
[6] | 李荣荣. La1.4Ca0.6CoMnO5+δ双钙钛矿中温固体氧化物燃料电池阴极材料的性能与优化[D]: [硕士学位论文]. 长春: 吉林大学, 2017 |
[7] | 郭天民, 等. 中温固体氧化物燃料电池的高熵双钙钛矿阴极材料: 兼容性与活性研究[J]. 无机材料学, 2023, 38(6): 693-700. |
[8] | 修惠丰. 中温固体氧化物燃料电池钴基双钙钛矿阴极材料PBCMx (M = Cu, Ni)的制备与性能研究[D]: [硕士学位论文]. 长春: 吉林大学, 2018. |
[9] | 龙文. 一些无钴和钴基钙钛矿结构中温固体氧化物燃料电池阴极材料的制备与性能研究[D]: [博士学位论文]. 长春: 吉林大学, 2014. |
[10] | 熊明文. 中温固体氧化物燃料电池钴基钙钛矿结构阴极材料性能研究[D]: [博士学位论文]. 上海: 上海交通大学, 2013. |
[11] | 张雷. 新型钴基钙钛矿中温固体氧化物燃料电池阴极材料的性能研究[D]: [博士学位论文]. 沈阳: 东北大学, 2019. |
[12] | 和永. 掺杂钴基和铁基钙钛矿结构IT-SOFC阴极材料制备及性能研究[D]: [硕士学位论文]. 天津: 中国民航大学, 2021. |
[13] | 李舒婷. CeO2掺杂SrCoO3-δ基钙钛矿阴极材料的制备及性能研究[D]: [硕士学位论文]. 包头: 内蒙古科技大学, 2019. |
[14] | Fu, Y., Subardi, A., Hsieh, M. and Chang, W. (2016) Electrochemical Properties of La0.5Sr0.5Co0.8M0.2O3−δ (M = Mn, Fe, Ni, Cu) Perovskite Cathodes for IT‐SOFCS. Journal of the American Ceramic Society, 99, 1345-1352. https://doi.org/10.1111/jace.14127 |
[15] | Adijanto, L., Küngas, R., Bidrawn, F., Gorte, R.J. and Vohs, J.M. (2011) Stability and Performance of Infiltrated La0.8Sr0.2CoxFe1−xO3 Electrodes with and without Sm0.2Ce0.8O1.9 Interlayers. Journal of Power Sources, 196, 5797-5802. https://doi.org/10.1016/j.jpowsour.2011.03.022 |
[16] | Choi, H.J., Bae, K., Jang, D.Y., Kim, J.W. and Shim, J.H. (2015) Performance Degradation of Lanthanum Strontium Cobaltite after Surface Modification. Journal of the Electrochemical Society, 162, F622-F626. https://doi.org/10.1149/2.0971506jes |
[17] | Shao, Z. and Haile, S.M. (2004) A High-Performance Cathode for the Next Generation of Solid-Oxide Fuel Cells. Nature, 431, 170-173. https://doi.org/10.1038/nature02863 |
[18] | Zhang, L., Long, W., Jin, F. and He, T. (2013) Electrical Conductivity, Thermal Expansion and Electrochemical Performances of Ba-Doped SrCo0.9Nb0.1O3−δ Cathodes for IT-SOFCS. International Journal of Hydrogen Energy, 38, 7947-7956. https://doi.org/10.1016/j.ijhydene.2013.04.107 |
[19] | 刘金成. 锶和钇基钙钛矿结构钴酸盐用作中温固体氧化物燃料电池阴极材料的性能研究[D]: [硕士学位论文]. 长春: 吉林大学, 2020. |
[20] | Chen, L., Jing, J., Lun, P., Zhang, P., Zheng, Z., Wang, H., et al. (2023) Ba0.9Co0.7Fe0.2Nb0.1O3−δ Perovskite as Promising Cathode Material for Proton Ceramic Fuel Cell. International Journal of Hydrogen Energy, 48, 39981-39988. https://doi.org/10.1016/j.ijhydene.2023.07.041 |
[21] | Sun, M., Wang, B., Yang, B., Li, P., Yin, K., Ma, L., et al. (2024) Synthesis and Characterization of Sm0.5Sr0.5CoO3−δ Nanofibers as Cathodes for Intermediate-Temperature Solid Oxide Fuel Cells. International Journal of Hydrogen Energy, 65, 505-514. https://doi.org/10.1016/j.ijhydene.2024.03.354 |
[22] | 张帆. 固体氧化物燃料电池钴基与无钴基层状钙钛矿阴极材料的制备及性能研究[D]: [硕士学位论文]. 呼和浩特: 内蒙古科技大学, 2020. |
[23] | 俞波. Co基钙钛矿阴极材料的设计与优化[D]: [硕士学位论文]. 四平: 吉林师范大学, 2015. |
[24] | Zhou, Q., He, T. and Ji, Y. (2008) SmBaCo2O5+x Double-Perovskite Structure Cathode Material for Intermediate-Temperature Solid-Oxide Fuel Cells. Journal of Power Sources, 185, 754-758. https://doi.org/10.1016/j.jpowsour.2008.07.064 |
[25] | Yoo, S., Choi, S., Kim, J., Shin, J. and Kim, G. (2013) Investigation of Layered Perovskite Type NdBa1−xSrxCo2O5+δ (x = 0, 0.25, 0.5, 0.75, and 1.0) Cathodes for Intermediate-Temperature Solid Oxide Fuel Cells. Electrochimica Acta, 100, 44-50. https://doi.org/10.1016/j.electacta.2013.03.041 |
[26] | Park, S., Choi, S., Kim, J., Shin, J. and Kim, G. (2012) Strontium Doping Effect on High-Performance PrBa1−xSrxCo2O5+δ as a Cathode Material for IT-SOFCS. ECS Electrochemistry Letters, 1, F29-F32. https://doi.org/10.1149/2.007205eel |
[27] | Kim, Y.N., Kim, J. and Manthiram, A. (2010) Effect of Fe Substitution on the Structure and Properties of LnBaCo2−xFexO5+δ (Ln = Nd and Gd) Cathodes. Journal of Power Sources, 195, 6411-6419. https://doi.org/10.1016/j.jpowsour.2010.03.100 |
[28] | Song, K.E., Schlegl, H., Kang, H., Choi, W. and Kim, J.H. (2023) Electrochemical Characteristic of Non-Stoichiometric SmBa0.45Sr0.5Co2O5+d Layered Perovskite Oxide System for IT-SOFC Cathode. International Journal of Hydrogen Energy, 48, 17664-17676. https://doi.org/10.1016/j.ijhydene.2023.01.255 |
[29] | 朱成军. 新型钴基钙钛矿阴极材料及在中温固体氧化物燃料电池中的应用[D]: [博士学位论文]. 长春: 吉林大学, 2009. |
[30] | 王盛琳. 钴基双钙钛矿SOFC阴极材料的改性研究[D]: [硕士学位论文]. 荆州: 长江大学, 2022. |
[31] | Leng, Y., Chan, S., Jiang, S. and Khor, K. (2004) Low-Temperature SOFC with Thin Film GDC Electrolyte Prepared in Situ by Solid-State Reaction. Solid State Ionics, 170, 9-15. https://doi.org/10.1016/j.ssi.2004.02.026 |
[32] | Wang, K., Ran, R., Zhou, W., Gu, H., Shao, Z. and Ahn, J. (2008) Properties and Performance of Ba0.5Sr0.5Co0.8Fe0.2O3−δ+ Sm0.2Ce0.8O1.9 Composite Cathode. Journal of Power Sources, 179, 60-68. https://doi.org/10.1016/j.jpowsour.2007.12.051 |