全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

离子辅助电子束蒸发SnSe薄膜的研究进展
Research Progress on ion Assisted Electron Beam Evaporation of SnSe Thin Films

DOI: 10.12677/amc.2025.131005, PP. 27-37

Keywords: SnSe薄膜,光电特性,太阳能电池,光电探测器
SnSe Thin Film
, Photoelectric Characteristic, Solar Cells, Photodetector

Full-Text   Cite this paper   Add to My Lib

Abstract:

硒化锡(SnSe)作为一种环保型二维层状材料,其带隙特性通常被认为接近于直接带隙半导体,表明它的导带极小值和价带极大值非常接近或完全重合,具有优异的光电特性以及不错的光吸收系数。因此,SnSe薄膜适合用作光电材料,在光伏和光电器件中具有广泛的应用前景。本文首先介绍了SnSe材料的光电特性,其次探究了近几年国内外SnSe薄膜的研究进展,总结分析了SnSe薄膜制备技术,最后总结并展望了SnSe薄膜在太阳能电池、光电探测器等领域的应用状况。SnSe薄膜会在未来光伏和光电器件中发挥不可替代的作用。
Tin selenide (SnSe), as an environmentally friendly two-dimensional layered material, is generally considered to have bandgap characteristics similar to direct bandgap semiconductors, indicating that its conduction band minimum and valence band maximum are very close or completely overlapped, and it has excellent optoelectronic properties and good light absorption coefficient. Therefore, SnSe thin films are suitable for use as optoelectronic materials and have broad application prospects in photovoltaics and optoelectronic devices. This article first introduces the optoelectronic properties of SnSe materials, then explores the research progress of SnSe thin films at home and abroad in the past years, summarizes thin film preparation technologies suitable for SnSe thin films, and finally summarizes and prospects the application status of SnSe thin films in solar cells, photodetectors and other fields. SnSe thin films will be play an irreplaceable role in photovoltaic and optoelectronic devices in the future.

References

[1]  Sutrisno, H.A. and Prasetyawati, R. (2017) Crystal Structure, Optical, and Electrical Properties of SnSe and SnS Semiconductor Thin Films Prepared by Vacuum Evaporation Techniques for Solar Cell Applications. IOP Conference Series: Materials Science and Engineering, 202, Article 012042.
https://doi.org/10.1088/1757-899x/202/1/012042
[2]  El-Menyawy, E.M., Azab, A.A., El-Khalawany, L.M., Okasha, N. and Terra, F.S. (2018) Influence of Annealing Temperatures on the Structural, Optical and Electrical Properties of SnSe Films. Journal of Materials Science: Materials in Electronics, 29, 8354-8363.
https://doi.org/10.1007/s10854-018-8846-1

[3]  Pallavolu, M.R., Minnam Reddy, V.R., Guddeti, P.R. and Park, C. (2019) Development of SnSe Thin Films through Selenization of Sputtered Sn-Metal Films. Journal of Materials Science: Materials in Electronics, 30, 15980-15988.
https://doi.org/10.1007/s10854-019-01968-9

[4]  Mandal, P., Show, B., Ahmed, S.T., Banerjee, D. and Mondal, A. (2020) Visible-Light Active Electrochemically Deposited Tin Selenide Thin Films: Synthesis, Characterization and Photocatalytic Activity. Journal of Materials Science: Materials in Electronics, 31, 4708-4718.
https://doi.org/10.1007/s10854-020-03027-0

[5]  Tyagi, S., Yadav, S., Wani, V., Singh, S., Biswas, S., Prajapati, K.N., et al. (2022) CVD Growth of Tin Selenide Thin Films for Optoelectronic Applications. 2022 IEEE Region 10 Symposium (TENSYMP), Mumbai, 1-3 July 2022, 1-6.
https://doi.org/10.1109/tensymp54529.2022.9864375

[6]  Sarkar, P., Nisha, Kumar, P. and Katiyar, R.S. (2023) The Role of Vast Off-Stoichiometry of SnSe Thin Film on Structural, Morphological, Optical, and Electrical Properties for Photovoltaic Applications. Journal of Materials Science: Materials in Electronics, 34, Article No. 1372.
https://doi.org/10.1007/s10854-023-10805-z

[7]  Sarkar, P. and Nisha, (2024) Substitution of an Isovalent Te-Ion in SnSe Thin Films for Tuning Optoelectrical Properties. Journal of Physics and Chemistry of Solids, 194, Article 112226.
https://doi.org/10.1016/j.jpcs.2024.112226

[8]  郝润豹. SnSe薄膜制备及其光电性质研究[D]: [硕士学位论文]. 哈尔滨: 哈尔滨工业大学, 2015.
[9]  宋波, 韩杰才, 郝润豹, 等. 铁电极化调控SnSe薄膜光电性质研究[J]. 哈尔滨工业大学学报, 2016, 48(11): 1-6.
[10]  Wang, W., Zheng, Z., Li, F., Li, C., Fan, P., Luo, J., et al. (2018) Synthesis Process and Thermoelectric Properties of N-Type Tin Selenide Thin Films. Journal of Alloys and Compounds, 763, 960-965.
https://doi.org/10.1016/j.jallcom.2018.06.021

[11]  Li, Z., Guo, Y., Zhao, F., Nie, C., Li, H., Shi, J., et al. (2020) Effect of Film Thickness and Evaporation Rate on Co-Evaporated SnSe Thin Films for Photovoltaic Applications. RSC Advances, 10, 16749-16755.
https://doi.org/10.1039/d0ra01749c

[12]  崔树松, 沈鸿烈, 李树兵, 江耀华, 刘睿,孙孪鸿. SnSe薄膜的两步法制备与光电性能研究[J]. 半导体光电, 2020, 41(3): 374-378.
[13]  崔岩, 乔吉祥, 赵洋, 等. 磁控溅射沉积制备SnSe薄膜及其热电性能研究[J]. 功能材料, 2021, 52(4): 4012-4017.
[14]  叶斌, 游冠军. SnSe2薄膜的载流子与声子动力学研究[J]. 光学仪器, 2022, 44(6): 44-51.
[15]  赵康, 张权辉, 陈上峰, 等. SnSe掺杂SnS薄膜的制备及热电性能研究[J]. 沈阳理工大学学报, 2024, 43(6): 61-66.
[16]  南亚新, 坚佳莹, 董芃凡, 等. SnS2的化学气相沉积法制备及光电特性[J]. 西安工业大学学报, 2023, 43(3): 268-276.
[17]  Yoon, Y., Lee, J., Lee, S., Kim, S. and Choi, H.C. (2021) Ultrasmooth Organic Films via Efficient Aggregation Suppression by a Low-Vacuum Physical Vapor Deposition. Materials, 14, Article 7247.
https://doi.org/10.3390/ma14237247

[18]  Roitman, A., Pfaff, C., Hauet, T., Shaulov, A. and Yeshurun, Y. (2024) Microwave Kinetic Inductance Detector Made of Molecular Beam Epitaxy (MBE)-Grown MgB2 Film. Nanomaterials, 14, Article 1731.
https://doi.org/10.3390/nano14211731

[19]  潘明奥. 溶液法制备大面积钙钛矿太阳能电池吸光层薄膜[J/OL]. 石油化工, 1-10.
http://kns.cnki.net/kcms/detail/11.2361.TQ.20241202.1443.030.html
, 2024-12-14.
[20]  李浩, 付志兵, 王红斌, 等. 铜基底上双层至多层石墨烯常压化学气相沉积法制备与机理探讨[J]. 物理学报, 2017, 66(5): 307-312.
[21]  Marques, V.E.C., Manfroi, L.A., Vieira, A.A., de Jesús Pereira, A.L., das Chagas Marques, F. and Vieira, L. (2023) Crystalline Structure, Morphology, and Adherence of Thick TiO2 Films Grown on 304 and 316L Stainless Steels by Atomic Layer Deposition. Coatings, 13, Article 757.
https://doi.org/10.3390/coatings13040757

[22]  Kozyrev, A.A. and Lebedev, A.D. (2019) Effect of the Amount of Argon in an Oxygen Ion Beam on the Optical Characteristics of Titanium Dioxide Films Obtained via Ion-Assisted Electron Beam Evaporation. Journal of Optical Technology, 86, 666-670.
https://doi.org/10.1364/jot.86.000666

[23]  郑皓天, 张立建, 陈超, 等. 脉冲激光沉积法制备Sb2S3薄膜太阳能电池[J]. 中国科学技术大学学报, 2020, 50(6): 733-737.
[24]  夏丰田, 王东博, 曹伽牧, 等. 基于磁控溅射法制备的大面积高质量硒化铂薄膜及其在红外探测中的应用(英文) [J]. Science China (Materials), 2024, 67(7): 2293-2301.
[25]  Boscher, N.D., Carmalt, C.J., Palgrave, R.G. and Parkin, I.P. (2008) Atmospheric Pressure Chemical Vapour Deposition of SnSe and SnSe2 Thin Films on Glass. Thin Solid Films, 516, 4750-4757.
https://doi.org/10.1016/j.tsf.2007.08.100

[26]  Feng, Y., Zhang, X., Lei, L., Nie, Y. and Xiang, G. (2020) Rapid Synthesis of Thermoelectric SnSe Thin Films by MPCVD. RSC Advances, 10, 11990-11993.
https://doi.org/10.1039/d0ra01203c

[27]  An, B., Ma, Y., Zhang, G., You, C. and Zhang, Y. (2020) Controlled Synthesis of Few-Layer SnSe2 by Chemical Vapor Deposition. RSC Advances, 10, 42157-42163.
https://doi.org/10.1039/d0ra08360g

[28]  Insawang, M., Ruamruk, S., Vora-ud, A., Singsoog, K., Inthachai, S., Chaarmart, K., et al. (2024) Investigation on Thermoelectric Properties of SnSe Thin Films as Prepared by RF Magnetron Sputtering. Radiation Physics and Chemistry, 222, Article 111789.
https://doi.org/10.1016/j.radphyschem.2024.111789

[29]  Minnam Reddy, V.R., Lindwall, G., Pejjai, B., Gedi, S., Kotte, T.R.R., Sugiyama, M., et al. (2018) Α-SnSe Thin Film Solar Cells Produced by Selenization of Magnetron Sputtered Tin Precursors. Solar Energy Materials and Solar Cells, 176, 251-258.
https://doi.org/10.1016/j.solmat.2017.12.003

[30]  Mars, K., Sałęga-Starzecki, M., Zawadzka, K.M. and Godlewska, E. (2024) Influence of Sputtering Power on the Properties of Magnetron Sputtered Tin Selenide Films. Materials, 17, Article 3132.
https://doi.org/10.3390/ma17133132

[31]  刘文成, 刘冬梅, 付秀华, 等. 射频离子辅助沉积对ITO薄膜光电性能的影响[J]. 长春理工大学学报(自然科学版), 2020, 43(5): 83-88.
[32]  李晓雪, 黄玲程, 郝永芹. 离子束辅助电子束蒸镀H4膜工艺及其抗激光损伤特性研究[J]. 激光与光电子学进展, 2022, 59(19): 391-396.
[33]  陈星琳, 刘金华, 卢兵, 等. 电气自动化技术在太阳能发电中的应用[J]. 中国科技信息, 2024(24): 45-47.
[34]  Nair, M.T.S., Barrios-Salgado, E., García, A.R., Aragón-Silva, M.R., Campos, J. and Nair, P.K. (2011) Chemically Deposited Tin Chalcogenides as Absorbers in Thin Film Solar Cells. ECS Transactions, 41, 177-183.
https://doi.org/10.1149/1.3628623

[35]  Barrios-Salgado, E., Rodríguez-Guadarrama, L.A., Ramón García, M.L., Martínez, L.G., Nair, M.T.S. and Nair, P.K. (2017) Thin Film Solar Cells of Cubic Structured Sns-Snse. Physica Status Solidi (a), 214, Article 1700036.
https://doi.org/10.1002/pssa.201700036
[36]  Yan, Y., Guo, T., Song, X., Yu, Z., Jiang, Y. and Xia, C. (2017) Cu(In,Ga)Se2 Thin Films Annealed with SnSe2 for Solar Cell Absorber Fabricated by Magnetron Sputtering. Solar Energy, 155, 601-607.
https://doi.org/10.1016/j.solener.2017.06.068

[37]  Razykov, T.M., Boltaev, G.S., Bosio, A., Ergashev, B., Kouchkarov, K.M., Mamarasulov, N.K., et al. (2018) Characterisation of SnSe Thin Films Fabricated by Chemical Molecular Beam Deposition for Use in Thin Film Solar Cells. Solar Energy, 159, 834-840.
https://doi.org/10.1016/j.solener.2017.11.053

[38]  Jamali-Sheini, F., Cheraghizade, M. and Yousefi, R. (2018) Electrochemically Synthesis and Optoelectronic Properties of Pb-and Zn-Doped Nanostructured SnSe Films. Applied Surface Science, 443, 345-353.
https://doi.org/10.1016/j.apsusc.2018.03.011

[39]  Jalalian-Larki, B., Jamali-Sheini, F. and Yousefi, R. (2020) Electrodeposition of In-Doped SnSe Nanoparticles Films: Correlation of Physical Characteristics with Solar Cell Performance. Solid State Sciences, 108, Article 106388.
https://doi.org/10.1016/j.solidstatesciences.2020.106388

[40]  Nandi, R., Pawar, P.S., Neerugatti, K.E., Cho, J.Y., Kim, S., Cho, S.H., et al. (2021) Vapor‐Transport‐Deposited Orthorhombic‐SnSe Thin Films: A Potential Cost‐Effective Absorber Material for Solar‐Cell Applications. Solar RRL, 6, Article 2100676.
https://doi.org/10.1002/solr.202100676

[41]  Ling, L., Zhang, Q., Zhu, L., Wang, C. and Chen, S. (2015) Interfacial Synthesis of SnSe Quantum Dots for Sensitized Solar Cells. RSC Advances, 5, 2155-2158.
https://doi.org/10.1039/c4ra10392k

[42]  Abd El-Rahman, K.F., Darwish, A.A.A. and El-Shazly, E.A.A. (2014) Electrical and Photovoltaic Properties of SnSe/Si Heterojunction. Materials Science in Semiconductor Processing, 25, 123-129.
https://doi.org/10.1016/j.mssp.2013.10.003

[43]  Franzman, M.A., Schlenker, C.W., Thompson, M.E. and Brutchey, R.L. (2010) Solution-Phase Synthesis of SnSe Nanocrystals for Use in Solar Cells. Journal of the American Chemical Society, 132, 4060-4061.
https://doi.org/10.1021/ja100249m

[44]  Ezhilmaran, B., Patra, A., Benny, S., M. R., S., V. V., A., Bhat, S.V., et al. (2021) Recent Developments in the Photodetector Applications of Schottky Diodes Based on 2D Materials. Journal of Materials Chemistry C, 9, 6122-6150.
https://doi.org/10.1039/d1tc00949d

[45]  Fang, J., Zhou, Z., Xiao, M., et al. (2020) Recent Advances in Low-Dimensional Semiconductor Nanomaterials and Their Applications in High-Performance Photodetectors. InfoMat, 2, 291-317.
https://doi.org/10.1002/inf2.12067

[46]  Barve, A.V., Lee, S.J., Noh, S.K. and Krishna, S. (2009) Review of Current Progress in Quantum Dot Infrared Photodetectors. Laser & Photonics Reviews, 4, 738-750.
https://doi.org/10.1002/lpor.200900031

[47]  Torrieri, D., Cheng, S. and Valenti, M.C. (2007) Robust Frequency-Hopping System for Channels with Interference and Frequency-Selective Fading. 2007 IEEE International Conference on Communications, Glasgow, 24-28 June 2007, 4481-4487.
https://doi.org/10.1109/icc.2007.740

[48]  Li, Y. and Hong, M. (2020) Parallel Laser Micro/Nano‐Processing for Functional Device Fabrication. Laser & Photonics Reviews, 14, Article 1900062.
https://doi.org/10.1002/lpor.201900062

[49]  Li, X., Chen, C., Yang, Y., Lei, Z. and Xu, H. (2020) 2D Re‐Based Transition Metal Chalcogenides: Progress, Challenges, and Opportunities. Advanced Science, 7, Article 2002320.
https://doi.org/10.1002/advs.202002320

[50]  Kumar, M., Rani, S., Vashistha, P., Pandey, A., Gupta, G., Husale, S., et al. (2021) Low Bias Operated, Fast Response SnSe Thin Film Vis-Nir Photodetector on Glass Substrate Using One-Step Thermal Evaporation Technique. Journal of Alloys and Compounds, 879, Article 160370.
https://doi.org/10.1016/j.jallcom.2021.160370

[51]  Vashishtha, P., Goswami, P., Prajapat, P., Kumar Gangwar, A., Singh, P. and Gupta, G. (2023) Highly Efficient, Self-Powered, and Air-Stable Broadband Photodetector Based on SnSe Thin Film. Materials Science and Engineering: B, 297, Article 116808.
https://doi.org/10.1016/j.mseb.2023.116808

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133