全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于TGF-β信号通路探讨中医药治疗骨折的研究进展
Research Progress on the Treatment of Fractures with Traditional Chinese Medicine Based on the TGF-β Signaling Pathway

DOI: 10.12677/hjbm.2025.151020, PP. 175-182

Keywords: TGF-β,骨折,中医药,研究进展
TGF-β
, Fracture, Traditional Chinese Medicine, Research Progress

Full-Text   Cite this paper   Add to My Lib

Abstract:

骨折发病人数呈增长趋势,具有多高危并发症、高致残率、恢复期长等难点。本文通过综述近几年国内外关于TGF-β信号通路在骨折愈合以及中医药通过调控TGF-β信号通路治疗骨折方面研究文献发现,TGF-β家族在骨折愈合中发挥关键作用,其可激活TGF-β/Smad信号通路,促进成骨细胞活性和抑制破骨细胞来加速愈合,具有多成分、多途径、多靶点的优势,中药复方、单味中药及外治法均显示出促进TGF-β分泌和表达,激活成骨细胞,抑制破骨细胞的潜力。未来研究需进一步探索中医药对TGF-β信号通路的具体调控机制,开展更大规模多中心、大样本临床试验,为今后骨折的临床治疗和基础研究提供更多新思路以及详实循证依据,以优化中医药新成果转化、临床指南和方案制定。
The number of fracture cases is on the rise, presenting challenges such as multiple high-risk complications, a high disability rate, and a long recovery period. Through reviewing literature from both domestic and international sources over the past few years concerning the TGF-β signaling pathway in bone fracture healing, and the research on traditional Chinese medicine (TCM) regulating the TGF-β signaling pathway for fracture treatment, it has been found that the TGF-β family plays a crucial role in bone fracture healing. It can activate the TGF-β/Smad signaling pathway, promote osteoblast activity, and inhibit osteoclasts to accelerate healing. This pathway offers advantages with multiple components, pathways, and targets. Traditional Chinese herbal formulas, single herbs, and external treatments all demonstrate the potential to promote TGF-β secretion and expression, activate osteoblasts, and inhibit osteoclasts. Future research needs to further explore the specific regulatory mechanisms of TCM on the TGF-β signaling pathway, conduct larger multi-center and large sample clinical trials, provide more new ideas and detailed evidence-based references for the clinical treatment and basic research of fractures in the future, and optimize the transformation of new TCM results, clinical guidelines, and protocol formulations.

References

[1]  黄桂成, 王拥军, 主编. 中医骨伤科学[M]. 新世纪第5版. 北京: 中国中医药出版社, 2021.
[2]  马颖宏, 孙志坚, 李庭, 等. 多发骨创伤的多中心流行病学分析[J/OL]. 骨科临床与研究杂志: 1-13.
http://kns.cnki.net/kcms/detail/10.1396.r.20241021.1549.002.html, 2024-11-02.
[3]  Lu, K., Wang, D., Zou, G., Wu, Y., Li, F., Song, Q., et al. (2024) A Multifunctional Composite Hydrogel That Sequentially Modulates the Process of Bone Healing and Guides the Repair of Bone Defects. Biomedical Materials, 19, Article ID: 035010.
https://doi.org/10.1088/1748-605x/ad2ed1
[4]  Zhang, X., Wang, G., Wang, W., Ran, C., Piao, F., Ma, Z., et al. (2023) Bone Marrow Mesenchymal Stem Cells Paracrine TGF-β1 to Mediate the Biological Activity of Osteoblasts in Bone Repair. Cytokine, 164, Article ID: 156139.
https://doi.org/10.1016/j.cyto.2023.156139
[5]  Kohara, Y., Kitazawa, R., Haraguchi, R., Imai, Y. and Kitazawa, S. (2022) Macrophages Are Requisite for Angiogenesis of Type H Vessels during Bone Regeneration in Mice. Bone, 154, Article ID: 116200.
https://doi.org/10.1016/j.bone.2021.116200
[6]  Lichtman, M.K., Otero‐Vinas, M. and Falanga, V. (2016) Transforming Growth Factor Beta (TGF‐β) Isoforms in Wound Healing and Fibrosis. Wound Repair and Regeneration, 24, 215-222.
https://doi.org/10.1111/wrr.12398
[7]  Mirzaei, S., Paskeh, M.D.A., Saghari, Y., Zarrabi, A., Hamblin, M.R., Entezari, M., et al. (2022) Transforming Growth Factor-β (TGF-β) in Prostate Cancer: A Dual Function Mediator? International Journal of Biological Macromolecules, 206, 435-452.
https://doi.org/10.1016/j.ijbiomac.2022.02.094
[8]  Gallo-Oller, G., Di Scala, M., Aranda, F. and Dotor, J. (2020) Transforming Growth Factor β (TGF-β) Activity in Immuno-Oncology Studies. Methods in Enzymology, 636, 129-172.
https://doi.org/10.1016/bs.mie.2019.06.008
[9]  Zong, J.W., Jiang, J., Shi, P., et al. (2020) Fatty Acid Extracts Facilitate Cutaneous Wound Healing through Activating AKT, ERK, and TGF-β/Smad3 Signaling and Promoting Angiogenesis. American Journal of Translational Research, 12, 478-492.
[10]  Gilbert, R., Vickaryous, M. and Viloria-Petit, A. (2016) Signalling by Transforming Growth Factor Beta Isoforms in Wound Healing and Tissue Regeneration. Journal of Developmental Biology, 4, Article 21.
https://doi.org/10.3390/jdb4020021
[11]  Baba, A.B., Rah, B., Bhat, G.R., Mushtaq, I., Parveen, S., Hassan, R., et al. (2022) Transforming Growth Factor-β (TGF-β) Signaling in Cancer-A Betrayal Within. Frontiers in Pharmacology, 13, Article 791272.
https://doi.org/10.3389/fphar.2022.791272
[12]  Lee, H. (2020) Recent Advances in the Development of TGF-β Signaling Inhibitors for Anticancer Therapy. Journal of Cancer Prevention, 25, 213-222.
https://doi.org/10.15430/jcp.2020.25.4.213
[13]  Huang, C., Chung, C., Hu, T., Chen, J., Liu, P. and Chen, C. (2021) Recent Progress in TGF-β Inhibitors for Cancer Therapy. Biomedicine & Pharmacotherapy, 134, Article ID: 111046.
https://doi.org/10.1016/j.biopha.2020.111046
[14]  Zhao, B. and Chen, Y. (2014) Regulation of TGF-β Signal Transduction. Scientifica, 2014, Article ID: 874065.
https://doi.org/10.1155/2014/874065
[15]  Ganesh, A., Ashikha Shirin Usman, P.P., Thomas, P., Ganapathy, D.M. and Sekar, D. (2024) Expression Analysis of Transforming Growth Factor Beta (TGF-β) in Oral Squamous Cell Carcinoma. Oral Oncology Reports, 9, Article ID: 100195.
https://doi.org/10.1016/j.oor.2024.100195
[16]  Shou, M., Zhou, H. and Ma, L. (2023) New Advances in Cancer Therapy Targeting TGF-β Signaling Pathways. Molecular TherapyOncolytics, 31, Article ID: 100755.
https://doi.org/10.1016/j.omto.2023.100755
[17]  Salhotra, A., Shah, H.N., Levi, B. and Longaker, M.T. (2020) Mechanisms of Bone Development and Repair. Nature Reviews Molecular Cell Biology, 21, 696-711.
https://doi.org/10.1038/s41580-020-00279-w
[18]  Marcucio, R.S., Miclau, T. and Bahney, C.S. (2022) A Shifting Paradigm: Transformation of Cartilage to Bone during Bone Repair. Journal of Dental Research, 102, 13-20.
https://doi.org/10.1177/00220345221125401
[19]  Hao, H., Teng, P., Liu, C. and Liu, G. (2024) The Correlation between Osteoporotic Vertebral Fracture and Paravertebral Muscle Condition and Its Clinical Treatment. Nano Biomedicine and Engineering, 16, 203-218.
https://doi.org/10.26599/nbe.2024.9290051
[20]  Steitz, A.M., Steffes, A., Finkernagel, F., Unger, A., Sommerfeld, L., Jansen, J.M., et al. (2020) Tumor-Associated Macrophages Promote Ovarian Cancer Cell Migration by Secreting Transforming Growth Factor β Induced (TGFBI) and Tenascin C. Cell Death & Disease, 11, Article No. 249.
https://doi.org/10.1038/s41419-020-2438-8
[21]  Sefat, F., Khaghani, S.A., Nejatian, T., Genedy, M., Abdeldayem, A., Moghaddam, Z.S., et al. (2015) Transforming Growth Factor β (TGF-β) Isomers Influence Cell Detachment of MG-63 Bone Cells. Tissue and Cell, 47, 567-574.
https://doi.org/10.1016/j.tice.2015.08.002
[22]  Liu, Q., Peng, X., Liu, X., Mou, X., Guo, Y., Yang, L., et al. (2023) Advances in the Application of Bone Morphogenetic Proteins and Their Derived Peptides in Bone Defect Repair. Composites Part B: Engineering, 262, Article ID: 110805.
https://doi.org/10.1016/j.compositesb.2023.110805
[23]  王宗江. PDGF-BB联合TGF-β1在骨折修复中的表达及其作用机制的研究[D]: [博士学位论文]. 济南: 山东大学, 2020.
[24]  李墨林. 骨细胞Wnt-TGF-β信号调控骨折愈合过程中成骨与成脂分化的作用与机制研究[D]: [博士学位论文]. 重庆: 重庆医科大学, 2023.
[25]  张宁, 杨振邦, 李耀章, 等. SRF、NF-κB及TGF-β1在脊柱骨折脊髓损伤患者中表达意义及其与患者术后预后的相关性分析[J]. 临床和实验医学杂志, 2024, 23(9): 953-956.
[26]  周健, 周大凯, 杨永波, 等. 血清HMGB1和TGF-β1在脊柱骨折脊髓损伤的意义[J]. 中国矫形外科杂志, 2021, 29(2): 123-126.
[27]  龙自祥, 罗春山, 蒲兴魏, 等. 术前血清TGF-β1、HMGB1、NLRP3对脊柱骨折合并脊髓损伤患者预后的预测价值[J]. 现代生物医学进展, 2024, 24(11): 2073-2078.
[28]  汝强, 王林杰, 马龙. 创伤性骨折患者Fib、APTT、D-D、GSP、EGF及TGF-β1的变化及意义[J]. 实验与检验医学, 2023, 41(3): 359-362.
[29]  丁丁, 赵志坚, 陈坤峰. Hcy、LPA及TGF-β1在创伤性骨折下肢静脉栓塞中的预测价值[J]. 分子诊断与治疗杂志, 2022, 14(1): 133-136.
[30]  何峰, 张文菊, 唐毓金, 等. PA、TGF-β1及ACTH在创伤性骨折中的表达及临床意义[J]. 分子诊断与治疗杂志, 2021, 13(4): 659-662, 666.
[31]  张馨心, 毛晓艳, 毛春焕, 等. 骨质疏松性骨折患者血清25(OH)D、TGF-β1、网膜素-1与MRI信号特点的相关性分析[J]. 东南大学学报(医学版), 2020, 39(6): 773-779.
[32]  刘璐. 骨质疏松症患者血清铁蛋白、TGF-β1、Omentin-1及骨转换标志物水平对胸腰椎骨折的预测效能[J]. 检验医学与临床, 2022, 19(10): 1395-1397.
[33]  刘亚东, 许立臣, 张贵齐. 骨质疏松性胸腰椎骨折患者炎性因子、T TGF-β1及IGF-1的表达水平及临床意义[J]. 保健医学研究与实践, 2020, 17(6): 50-53.
[34]  武怡平, 周刚, 高帅, 等. 双膝骨胶宝通过调节骨生长因子与TGF-β/Smad3通路对大鼠骨折愈合影响研究[J/OL]. 辽宁中医杂志: 1-10.
https://link.cnki.net/urlid/21.1128.R.20240716.1821.004, 2024-11-11.
[35]  张远军, 熊文颖, 戴卫波. 基于TGF-β/Smad信号通路探讨伤科九味健骨片对骨折大鼠的影响[J]. 现代药物与临床, 2023, 38(2): 257-262.
[36]  张琳. 活血镇痛汤对胫骨平台骨折术后疗效、sICAM-1、TGF-β1、sVCAM-1的影响[J]. 中国医学创新, 2021, 18(31): 100-103.
[37]  孙雨锋, 韦中阳, 韦宇霞. 接骨续筋胶囊对胫骨骨折患者骨愈合进程及血清TGF-β1水平的影响分析[J]. 罕少疾病杂志, 2020, 27(2): 64-66.
[38]  夏可莹, 谢水华. 补肝益肾强骨方对老年不稳定性股骨粗隆间骨折肝肾亏虚型患者TGF-β1、tPINP、VEGF及炎性因子的影响[J]. 广州中医药大学学报, 2024, 41(6): 1457-1464.
[39]  李启义, 张江涛, 常守亚. 益气活血通络汤与低分子肝素抗凝对大鼠骨折愈合、血液流变学及TGF-β1表达的影响[J]. 中国老年学杂志, 2024, 44(4): 972-976.
[40]  陈海, 毛丰, 朱家旭, 等. 补肾活血壮骨汤联合外科手术治疗骨质疏松性髋部骨折患者对血清TGF-β1、FGF-2含量和骨折愈合的影响[J]. 世界中西医结合杂志, 2022, 17(10): 2077-2081.
[41]  王佳玮, 苏育南, 潘德艺, 等. 臭灵丹提取物调控TGF-β/BMPs信号通路对股骨粗隆间骨折固定术后感染大鼠的影响[J]. 中华医院感染学杂志, 2024, 34(4): 542-546.
[42]  刘健. 丹参酮ⅡA磺酸钠注射液联合骨肽注射液对胫骨骨折术后患者关节功能及血清sICAM-1、VEGF、TGF-β1水平的影响[J]. 现代医学与健康研究电子杂志, 2020, 4(17): 50-52.
[43]  刘海军, 董万涛, 王前源, 等. 续骨丹对兔胫骨骨折bFGF及TGF-β/BMPs信号通路表达的影响[J]. 中国老年学杂志, 2022, 42(19): 4784-4787.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133