全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

肥胖基因及其互作microRNA与疾病发生关联的生物信息学研究
Bioinformatics Studies on the Association between Obesity Genes and Their Interacting microRNAs with Disease Occurrence

DOI: 10.12677/hjbm.2025.151018, PP. 159-170

Keywords: 肥胖,microRNA,心血管疾病,癌症,生物信息学
Obesity
, microRNA, Cardiovascular Disease, Cancer, Bioinformatics

Full-Text   Cite this paper   Add to My Lib

Abstract:

目的:基于生物信息学探讨肥胖与疾病发生的关联。方法:分别以“肥胖”、“心血管疾病”、“心脏病”、“癌症”、“肝脏代谢失调”为关键词,在相关疾病数据库(Genecards、TTD、OMIM、Uniprot)中获取关键靶点。基于STRING数据库构建疾病与肥胖交叉靶点的蛋白–蛋白互作网络,筛选核心作用靶点,利用DAVID数据库进行基因本体功能(GO)以及京都基因与基因组百科全书(KEGG)通路富集分析,预测作用在核心作用靶点上的非编码RNA、转录因子,并构建基因调控网络。结果:筛选肥胖与心血管疾病的核心作用靶点25个,互作miRNA 58个;肥胖与心脏病核心作用靶点30个,互作miRNA 81个;肥胖与癌症核心作用靶点25个,互作miRNA 84个;肥胖与肝脏代谢失调核心作用靶点30个,互作miRNA 73个。肥胖与心血管疾病核心作用靶点主要富集于脂质和动脉粥样硬化、腺苷酸激活蛋白激酶信号通路等;肥胖与心脏病核心作用靶点主要富集于胆固醇代谢、脂质动脉粥样硬化等信号通路;肥胖与癌症核心作用靶点主要富集于腺苷酸激活蛋白激酶、磷脂酰肌醇3–激酶–Akt信号通路等;肥胖与肝脏代谢失调的核心作用靶点主要富集于非酒精性脂肪性肝病、脂肪细胞因子信号通路等。本研究为后续探究肥胖与疾病间复杂的作用关系提供了新方向与新思路。
Objective: To explore the association between obesity and disease occurrence based on bioinformatics. Methods: The key targets were obtained from the related disease databases (Genecards, TTD, OMIM, Uniprot) with the keywords of “obesity”, “cardiovascular disease”, “heart disease”, “cancer” and “liver metabolic disorder”. Based on the STRING database, the protein-protein interaction network of disease and obesity cross-targets was constructed, the core targets were screened, and the DAVID database was used to analyze the gene ontology function (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways, so as to predict the non-coding RNA and transcription factors acting on the core targets, and construct the gene regulatory network. Results: A total of 25 core targets and 58 interacting miRNAs were screened between obesity and cardiovascular diseases. There were 30 core targets of obesity and heart disease, and 81 interacting miRNAs. There were 25 core targets of obesity and cancer, and 84 interacting miRNAs. There were 30 core targets of obesity and liver metabolic disorders, and 73 interacting miRNAs. The core targets of obesity and cardiovascular disease are mainly enriched in lipids, atherosclerosis, adenylate-activated protein kinases, the signaling pathway, etc. The core targets of obesity and heart disease are mainly enriched in cholesterol metabolism, lipid atherosclerosis and other signaling pathways. The core targets of obesity and cancer are mainly enriched in adenylate-activated protein kinase and phosphatidylinositol 3-kinase-Akt signaling pathway. The core targets of obesity and liver metabolic disorders are mainly enriched in non-alcoholic fatty liver disease and adipocytokine signaling pathways. This study provides a new

References

[1]  王甜, 蒋明睿. 超重肥胖率快速增长, 如何打赢体重管理“持久战” [N]. 新华日报, 2024-05-22(010).
[2]  杨菊红, 冯凭. 心脏脂肪变性与肥胖相关性心脏病[J]. 心血管病学进展, 2007, 28(1): 142-145.
[3]  曾民德. 重视肥胖与肝脏的关系[J]. 肝脏, 2005, 10(3): 169-170.
[4]  刘文清, 熊昱鹏, 李丽华, 米娜瓦尔∙胡加艾合买提. 肥胖引发心血管疾病的相关机制研究进展[J]. 临床医学进展, 2023, 13(8): 12887-12893.
[5]  卫文. 肥胖将增加癌症风险[J]. 医药前沿, 2018, 8(28): 3-4.
[6]  张群慧, 陈明卫. miRNA与肥胖[J]. 国际内分泌代谢杂志, 2017, 37(1): 35-38.
[7]  李丹丹, 王东梅, 曹卫平, 等. 基于生物信息学探讨肥胖与不孕症的关系[J]. 中国生育健康杂志, 2022, 33(5): 415-419.
[8]  楼秀余. 人类肥胖相关基因的研究[M]. 上海: 上海舒泽生物科技研究所, 2013.
[9]  Steinberg, G.R. and Kemp, B.E. (2009) AMPK in Health and Disease. Physiological Reviews, 89, 1025-1078.
https://doi.org/10.1152/physrev.00011.2008
[10]  罗黄洋. 基于网络药理学与分子对接技术探索豆腐柴降脂功效[D]: [硕士学位论文]. 重庆: 重庆三峡学院, 2023.
[11]  Lebovitz, H. (2001) Insulin Resistance: Definition and Consequences. Experimental and Clinical Endocrinology & Diabetes, 109, S135-S148.
https://doi.org/10.1055/s-2001-18576
[12]  Kadowaki, T., Hara, K., Yamauchi, T., Terauchi, Y., Tobe, K. and Nagai, R. (2003) Molecular Mechanism of Insulin Resistance and Obesity. Experimental Biology and Medicine, 228, 1111-1117.
https://doi.org/10.1177/153537020322801003
[13]  刘志勇, 任德启, 郭健, 等. 益气活血清热解毒方通过JAK/STAT信号通路对动脉粥样硬化的影响及其分子机制[J]. 中国老年学杂志, 2023, 43(5): 1155-1158.
[14]  Weber, C. and Noels, H. (2011) Atherosclerosis: Current Pathogenesis and Therapeutic Options. Nature Medicine, 17, 1410-1422.
https://doi.org/10.1038/nm.2538
[15]  KUMAR, V., SINGH, S., MISRA, M. and MALIK, S. (2001) Effects of Duration and Time of Food Availability on Photoperiodic Responses in the Migratory Male Blackheaded Bunting (Emberiza melanocephala). Journal of Experimental Biology, 204, 2843-2848.
https://doi.org/10.1242/jeb.204.16.2843
[16]  Vriend, J. (1983) Evidence for Pineal Gland Modulation of the Neuroendocrine-Thyroid Axis. Neuroendocrinology, 36, 68-78.
https://doi.org/10.1159/000123439
[17]  高建胜, 孙元芳, 钟小天, 等. 基于“成分-靶点-通路”网络多层次分析夏枯草治疗视神经病变的作用机制[J]. 中药材, 2020, 43(7): 1702-1708.
[18]  Oldoni, F., Sinke, R.J. and Kuivenhoven, J.A. (2014) Mendelian Disorders of High-Density Lipoprotein Metabolism. Circulation Research, 114, 124-142.
https://doi.org/10.1161/circresaha.113.300634
[19]  范吉林, 朱婷婷, 田晓玲, 等. 基于生物信息学探讨肥胖与高血压的关系[J]. 中华高血压杂志, 2022, 30(4): 352-358.
[20]  McKernan, K., Varghese, M., Patel, R. and Singer, K. (2020) Role of TLR4 in the Induction of Inflammatory Changes in Adipocytes and Macrophages. Adipocyte, 9, 212-222.
https://doi.org/10.1080/21623945.2020.1760674
[21]  Liang, H.F., Yin, B.J., Zhang, H.L., et al. (2008) Blockade of Tumor Necrosis Factor (TNF) Receptor Type 1-Mediated TNF-α Signaling Protected Wistar Rats from Diet-Induced Obesity and Insulin Resistance. Endocrinology, 149, 2943-2951.
[22]  Cohen, B., Novick, D. and Rubinstein, M. (1996) Modulation of Insulin Activities by Leptin. Science, 274, 1185-1188.
https://doi.org/10.1126/science.274.5290.1185

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133