全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

负载控制的纳米压痕尺寸效应分析模型
An Analytical Model for the Size Effect of Load-Controlled Nanoindentation

DOI: 10.12677/nat.2024.144008, PP. 65-75

Keywords: 压痕尺寸效应,网格纳米压痕,位错理论,统计分析,硬度
Indentation Size Effect
, Grid Nanoindentation, Dislocation Theory, Statistical Analysis, Hardness

Full-Text   Cite this paper   Add to My Lib

Abstract:

纳米压痕是表征纳米尺度材料特性的一项强大技术,但压痕尺寸效应会影响其精度和可重复性。本研究提出一种负载控制的纳米压痕尺寸效应分析模型,利用位错理论进行分析,并通过熔融石英和无氧铜的网格纳米压痕实验验证,研究了网格纳米压痕中的压痕尺寸效应。结果表明,与传统的深度控制方法相比,负载控制的网格纳米压痕尺寸效应模型显著提高了纳米硬度的准确性,将传统模型的置信区间从5%缩小到0.34%。此外,通过统计分析确定了无氧铜三个不同的纳米硬度分布群,凸显了网格纳米压痕表征材料微观机械性能的作用。
Nanoindentation is a powerful technique for characterising nanoscale material properties, but indentation size effects can affect its accuracy and repeatability. In this study, we propose a load-controlled analytical model for the indentation size effect in nanoindentation, which is analyzed using dislocation theory and experimentally validated by experimental verification of grid nanoindentation in fused silica and oxygen-free copper. The results show that the load-controlled grid nanoindentation size effect model significantly improves the accuracy of the nano-hardness compared to the conventional depth-controlled method, narrowing the confidence interval of the conventional model from 5% to 0.34%. In addition, three different clusters of nano-hardness distributions for oxygen-free copper were identified by statistical analysis, highlighting the usefulness of grid nanoindentation to characterize the micro-mechanical properties of materials.

References

[1]  Liu, N., Yang, X., Yu, Z. and Zhao, L. (2020) Indentation Size Effect of Germanium Single Crystal with Different Crystal Orientations. Transactions of Nonferrous Metals Society of China, 30, 181-190.
https://doi.org/10.1016/s1003-6326(19)65190-3
[2]  Nix, W.D. and Gao, H. (1998) Indentation Size Effects in Crystalline Materials: A Law for Strain Gradient Plasticity. Journal of the Mechanics and Physics of Solids, 46, 411-425.
https://doi.org/10.1016/s0022-5096(97)00086-0
[3]  Zheng, Z., Chiang, P., Huang, Y., Wang, W., Li, P., Tsai, Y., et al. (2019) Study of Grain Size Effect of Cu Metallization on Interfacial Microstructures of Solder Joints. Microelectronics Reliability, 99, 44-51.
https://doi.org/10.1016/j.microrel.2019.05.018
[4]  Kathavate, V.S., Praveen Kumar, B., Singh, I. and Eswar Prasad, K. (2021) Analysis of Indentation Size Effect (ISE) in Nanoindentation Hardness in Polycrystalline PMN-PT Piezoceramics with Different Domain Configurations. Ceramics International, 47, 11870-11877.
https://doi.org/10.1016/j.ceramint.2021.01.027
[5]  Javaid, F., Xu, Y., Bruder, E. and Durst, K. (2018) Indentation Size Effect in Tungsten: Quantification of Geometrically Necessary Dislocations Underneath the Indentations Using HR-EBSD. Materials Characterization, 142, 39-42.
https://doi.org/10.1016/j.matchar.2018.05.016
[6]  Udalov, A., Parshin, S. and Udalov, A. (2019) Indentation Size Effect during Measuring the Hardness of Materials by Pyramidal Indenter. Materials Today: Proceedings, 19, 2034-2036.
https://doi.org/10.1016/j.matpr.2019.07.068
[7]  Hu, J., Sun, W., Jiang, Z., Zhang, W., Lu, J., Huo, W., et al. (2017) Indentation Size Effect on Hardness in the Body-Centered Cubic Coarse-Grained and Nanocrystalline Tantalum. Materials Science and Engineering: A, 686, 19-25.
https://doi.org/10.1016/j.msea.2017.01.033
[8]  Voyiadjis, G.Z., Malekmotiei, L. and Samadi-Dooki, A. (2018) Indentation Size Effect in Amorphous Polymers Based on Shear Transformation Mediated Plasticity. Polymer, 137, 72-81.
https://doi.org/10.1016/j.polymer.2018.01.006
[9]  Hu, J., Zhang, W., Peng, G., Zhang, T. and Zhang, Y. (2018) Nanoindentation Deformation of Refine-Grained AZ31 Magnesium Alloy: Indentation Size Effect, Pop-In Effect and Creep Behavior. Materials Science and Engineering: A, 725, 522-529.
https://doi.org/10.1016/j.msea.2018.03.104
[10]  Mulewska, K., Dominguez-Gutierrez, F.J., Kalita, D., Byggmästar, J., Wei, G.Y., Chromiński, W., et al. (2023) Self-Ion Irradiation of High Purity Iron: Unveiling Plasticity Mechanisms through Nanoindentation Experiments and Large-Scale Atomistic Simulations. Journal of Nuclear Materials, 586, Article ID: 154690.
https://doi.org/10.1016/j.jnucmat.2023.154690
[11]  Shrestha, P., Smedskjaer, M.M., Bauchy, M. and Hoover, C.G. (2024) Impact of Strain Rate on the Indentation Size Effect: Evidence of an Intimate Link between Size Effect, Strain Rate and Ductility in Soda-Lime Silica Glass. Journal of Non-Crystalline Solids, 637, Article ID: 123031.
https://doi.org/10.1016/j.jnoncrysol.2024.123031
[12]  Shen, Z., Su, Y., Liang, Z. and Long, X. (2024) Review of Indentation Size Effect in Crystalline Materials: Progress, Challenges and Opportunities. Journal of Materials Research and Technology, 31, 117-132.
https://doi.org/10.1016/j.jmrt.2024.06.071
[13]  Haušild, P., Čech, J., Materna, A. and Matějíček, J. (2019) Statistical Treatment of Grid Indentation Considering the Effect of the Interface and the Microstructural Length Scale. Mechanics of Materials, 129, 99-103.
https://doi.org/10.1016/j.mechmat.2018.11.006
[14]  Almasri, A.H. and Voyiadjis, G.Z. (2009) Nano-Indentation in FCC Metals: Experimental Study. Acta Mechanica, 209, 1-9.
https://doi.org/10.1007/s00707-009-0151-x
[15]  McElhaney, K.W., Vlassak, J.J. and Nix, W.D. (1998) Determination of Indenter Tip Geometry and Indentation Contact Area for Depth-Sensing Indentation Experiments. Journal of Materials Research, 13, 1300-1306.
https://doi.org/10.1557/jmr.1998.0185
[16]  Lim, Y.Y. and Chaudhri, M.M. (1999) The Effect of the Indenter Load on the Nanohardness of Ductile Metals: An Experimental Study on Polycrystalline Work-Hardened and Annealed Oxygen-Free Copper. Philosophical Magazine A, 79, 2979-3000.
https://doi.org/10.1080/01418619908212037
[17]  Abu Al-Rub, R.K. (2007) Prediction of Micro and Nanoindentation Size Effect from Conical or Pyramidal Indentation. Mechanics of Materials, 39, 787-802.
https://doi.org/10.1016/j.mechmat.2007.02.001
[18]  Chen, L., Iyengar, S., Zhou, J., Turba, K. and Ståhl, J. (2014) Characterization of Microstructure and Mechanical Properties of High Chromium Cast Irons Using SEM and Nanoindentation. Journal of Materials Engineering and Performance, 24, 98-105.
https://doi.org/10.1007/s11665-014-1245-8
[19]  Randall, N.X., Vandamme, M. and Ulm, F. (2009) Nanoindentation Analysis as a Two-Dimensional Tool for Mapping the Mechanical Properties of Complex Surfaces. Journal of Materials Research, 24, 679-690.
https://doi.org/10.1557/jmr.2009.0149
[20]  Ulm, F., Vandamme, M., Jennings, H.M., Vanzo, J., Bentivegna, M., Krakowiak, K.J., et al. (2010) Does Microstructure Matter for Statistical Nanoindentation Techniques? Cement and Concrete Composites, 32, 92-99.
https://doi.org/10.1016/j.cemconcomp.2009.08.007

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133