|
Material Sciences 2025
ZnCo2O4表面刻蚀光催化剂的制备及其CO?还原性能研究
|
Abstract:
光催化还原CO2利用可见光能量将CO2转化为有机化合物或可燃性气体,同时消耗掉大气中的CO2,具有巨大的潜力应对能源和环境问题。钴酸锌(ZnCo2O4)因其优异的光吸收性能、适中的能带结构和良好的光电化学特性而成为研究的热点。然而,普通的ZnCo2O4在光催化还原CO2方面存在一些限制,如光催化活性低并且选择性差。因此,对ZnCo2O4进行改性以提高其光催化性能已成为当前研究的重点。双金属氧化物材料被广泛用于改善光催化剂的性能,通过合适的界面构建增强光生载流子的分离和传输。通过探索ZnCo2O4的界面构建,优化光吸收性能,提高ZnCo2O4对可见光的利用率;增强光生电子–空穴对的分离效率,减少电子–空穴对的复合;提高CO2的吸附和活化。
Photocatalytic CO? reduction, utilizing visible light energy to convert CO? into organic compounds or combustible gases while consuming atmospheric CO?, holds great potential in addressing energy and environmental issues. Zinc cobalt oxide (ZnCo?O?) has become a research hotspot due to its excellent light absorption properties, moderate band structure, and good photoelectrochemical characteristics. However, the performance of conventional ZnCo?O? in photocatalytic CO? reduction is limited by factors such as low photocatalytic activity and poor selectivity. Therefore, modifying ZnCo?O? to enhance its photocatalytic performance has become a key focus of current research. Bimetallic oxide materials are widely used to improve the performance of photocatalysts by constructing suitable interfaces that enhance the separation and transport of photogenerated charge carriers. By exploring the interface construction of ZnCo?O?, its light absorption performance can be optimized, improving ZnCo?O?’s utilization of visible light; the separation efficiency of photogenerated electron-hole pairs can be enhanced, reducing electron-hole recombination; and the adsorption and activation of CO? can be improved.
[1] | Low, J., Yu, J. and Ho, W. (2015) Graphene-Based Photocatalysts for CO2 Reduction to Solar Fuel. The Journal of Physical Chemistry Letters, 6, 4244-4251. https://doi.org/10.1021/acs.jpclett.5b01610 |
[2] | Xu, X., Wang, H., Gao, T., Luo, T., Zvereva, I., Orudzhev, F., et al. (2024) 2D Copper-Porphyrin Metal-Organic Framework Nanosheet‐Photosensitized TiO2 for Efficiently Broadband Light‐Driven Conversion of CO2 to CH4. Solar RRL, 8, Article 2400081. https://doi.org/10.1002/solr.202400081 |
[3] | Xu, L., Li, L., Yu, L. and Yu, J.C. (2022) Efficient Generation of Singlet Oxygen on Modified g-C3N4 Photocatalyst for Preferential Oxidation of Targeted Organic Pollutants. Chemical Engineering Journal, 431, Article 134241. https://doi.org/10.1016/j.cej.2021.134241 |
[4] | Zhou, Y., Wang, Z., Huang, L., Zaman, S., Lei, K., Yue, T., et al. (2021) Engineering 2D Photocatalysts toward Carbon Dioxide Reduction. Advanced Energy Materials, 11, Article 2003159. https://doi.org/10.1002/aenm.202003159 |
[5] | Zhao, C., Zhou, A., Dou, Y., Zhou, J., Bai, J. and Li, J. (2021) Dual MOFs Template-Directed Fabrication of Hollow-Structured Heterojunction Photocatalysts for Efficient CO2 Reduction. Chemical Engineering Journal, 416, Article 129155. https://doi.org/10.1016/j.cej.2021.129155 |
[6] | Li, X., Li, Y., Guo, X. and Jin, Z. (2023) Design and Synthesis of ZnCO2O4/CdS for Substantially Improved Photocatalytic Hydrogen Production. Frontiers of Chemical Science and Engineering, 17, 606-616. https://doi.org/10.1007/s11705-022-2233-4 |
[7] | Yang, H., Zhang, D., Luo, Y., Yang, W., Zhan, X., Yang, W., et al. (2022) Highly Efficient and Selective Visible‐Light Driven Photoreduction of CO2 to CO by Metal-Organic Frameworks‐Derived Ni-Co-O Porous Microrods. Small, 18, Article 2202939. https://doi.org/10.1002/smll.202202939 |
[8] | Zhu, J., Qian, J., Peng, X., Xia, B. and Gao, D. (2023) Etching-Induced Surface Reconstruction of NiMoO4 for Oxygen Evolution Reaction. Nano-Micro Letters, 15, Article No. 30. https://doi.org/10.1007/s40820-022-01011-3 |
[9] | Zhang, S., Zhang, S. and Song, L. (2015) Co(II)-Grafted Ag3PO4 Photocatalysts with Unexpected Photocatalytic Ability: Enhanced Photogenerated Charge Separation Efficiency, Photocatalytic Mechanism and Activity. Journal of Hazardous Materials, 293, 72-80. https://doi.org/10.1016/j.jhazmat.2015.03.047 |
[10] | Liu, Y., Wang, M., Li, D., Fang, F. and Huang, W. (2021) Engineering Self-Doped Surface Defects of Anatase TiO2 Nanosheets for Enhanced Photocatalytic Efficiency. Applied Surface Science, 540, Article 148330. https://doi.org/10.1016/j.apsusc.2020.148330 |
[11] | Li, X., Zhang, M., Wu, L., Fu, Q. and Gao, H. (2019) Annealing Temperature Dependent ZnCO2O4 Nanosheet Arrays Supported on Ni Foam for High-Performance Asymmetric Supercapacitor. Journal of Alloys and Compounds, 773, 367-375. https://doi.org/10.1016/j.jallcom.2018.09.197 |
[12] | Silambarasan, M., Ramesh, P.S., Geetha, D., Ravikumar, K., Ali, H.E., Algarni, H., et al. (2021) A Facile Preparation of Zinc Cobaltite (ZnCO2O4) Nanostructures for Promising Supercapacitor Applications. Journal of Inorganic and Organometallic Polymers and Materials, 31, 3905-3920. https://doi.org/10.1007/s10904-021-02077-z |
[13] | Shen, Z., Huang, J., Chen, J. and Li, Y. (2022) Phase Segregation via Etching-Induced Cation Migration in CoSx-ZnS Nanoarchitectures for Solar Hydrogen Evolution. Catalysis Science & Technology, 12, 1408-1417. https://doi.org/10.1039/d1cy02158c |