全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

中空TiO2合成及光催化降解罗丹明B性能研究
Synthesis of Hollow TiO2 and Study on Its Photocatalytic Degradation Performance of RhB

DOI: 10.12677/ms.2025.151006, PP. 46-53

Keywords: 催化剂,中空TiO2,光催化降解,罗丹明B
Catalyst
, Hollow TiO2, Photocatalytic Degradation, RhB

Full-Text   Cite this paper   Add to My Lib

Abstract:

利用太阳能等可再生能源已经成为解决环境和能源问题的重要研究方向。本文通过经典的模板法制备中空TiO2,考察其光催化降解罗丹明B (RhB)的活性,并通过SEM、TEM、XRD、UV-Vis等手段分析中空TiO2的形貌与结构、光电化学性能以及光催化降解机理。结果表明,在模拟太阳光照射300 min后,中空TiO2对RhB的降解率高达94.4%,降解动力学常数(k)可达0.0066 min1,是普通TiO2的9倍。本工作可为光催化降解有机污染物提供新的思路。
The utilization of renewable energy such as solar energy has become an important research direction in solving environmental and energy problems. This paper uses a classic template method to prepare hollow TiO2 and investigate its photocatalytic degradation performance of RhB. The morphology, structure, photo-electrochemical and photocatalytic degradation mechanism of hollow TiO2 is analyzed by means of SEM, TEM, XRD, UV-Vis, etc. These results indicate that after simulating solar irradiation for 300 minutes, the degradation rate of RhB by hollow TiO2 was as high as 94.4%, and the degradation kinetics constant (k) of RhB by hollow TiO2 can reach 0.0066 min-1, which is 9 times higher than that of ordinary TiO2. This work can provide new ideas for photocatalytic degradation of organic pollutants.

References

[1]  Shen, Q., Wang, F., Liao, K., Liu, Y., Mei, Z., Zhang, S., et al. (2025) Self-Powered Electroassisted Photocatalysis for Wastewater Treatment. Nano Energy, 133, Article ID: 110463.
https://doi.org/10.1016/j.nanoen.2024.110463

[2]  Zhang, B., Sun, B., Liu, F., Gao, T. and Zhou, G. (2024) TiO2-Based S-Scheme Photocatalysts for Solar Energy Conversion and Environmental Remediation. Science China Materials, 67, 424-443.
https://doi.org/10.1007/s40843-023-2754-8

[3]  Haghighi, P. and Haghighat, F. (2024) TiO2-Based Photocatalytic Oxidation Process for Indoor Air VOCs Removal: A Comprehensive Review. Building and Environment, 249, Article ID: 111108.
https://doi.org/10.1016/j.buildenv.2023.111108

[4]  Zahmatkesh, S., Hajiaghaei-Keshteli, M., Bokhari, A., Sundaramurthy, S., Panneerselvam, B. and Rezakhani, Y. (2023) Wastewater Treatment with Nanomaterials for the Future: A State-Of-The-Art Review. Environmental Research, 216, Article ID: 114652.
https://doi.org/10.1016/j.envres.2022.114652

[5]  Dong, Q., Li, X., Duan, Y., Tian, Q., Liang, X., Zhu, Y., et al. (2024) Recent Advances in Core-Shell Organic Framework-Based Photocatalysts for Energy Conversion and Environmental Remediation. Journal of Energy Chemistry, 95, 168-199.
https://doi.org/10.1016/j.jechem.2024.03.042

[6]  Zhao, J., Zhang, B. and Sun, S. (2024) Yolk-Shell Nanomaterials for Advanced Oxidation Processes. Surfaces and Interfaces, 53, Article ID: 105061.
https://doi.org/10.1016/j.surfin.2024.105061

[7]  史柯柯, 刘木子, 刘芳, 等. TiO2@V2O5空心纳米球催化剂增强MgH2体系储氢性能[J]. 科学通报, 2024, 69(14): 1923-1933.
[8]  Ramkumar, G., Tamilselvi, M., D Sundarsingh Jebaseelan, S., Mohanavel, V., Kamyab, H., Anitha, G., et al. (2024) Enhanced Machine Learning for Nanomaterial Identification of Photo Thermal Hydrogen Production. International Journal of Hydrogen Energy, 52, 696-708.
https://doi.org/10.1016/j.ijhydene.2023.07.128

[9]  李勇, 高佳琦, 杜超, 等. Ni@C@TiO2核壳双重异质结的构筑及光热催化分解水产氢[J]. 化工学报, 2023, 74(6): 2458-2467.
[10]  Li, Y., Shen, Q., Guan, R., Xue, J., Liu, X., Jia, H., et al. (2020) A C@TiO2 Yolk-Shell Heterostructure for Synchronous Photothermal-Photocatalytic Degradation of Organic Pollutants. Journal of Materials Chemistry C, 8, 1025-1040.
https://doi.org/10.1039/c9tc05504e

[11]  Li, Y., Xue, J., Shen, Q., Jia, S., Li, Q., Li, Y., et al. (2021) Construction of a Ternary Spatial Junction in Yolk-Shell Nanoreactor for Efficient Photo-Thermal Catalytic Hydrogen Generation. Chemical Engineering Journal, 423, Article ID: 130188.
https://doi.org/10.1016/j.cej.2021.130188

[12]  Li, Y., Chang, H., Wang, Z., Shen, Q., Liu, X., Xue, J., et al. (2022) A 3D C@TiO2 Multishell Nanoframe for Simultaneous Photothermal Catalytic Hydrogen Generation and Organic Pollutant Degradation. Journal of Colloid and Interface Science, 609, 535-546.
https://doi.org/10.1016/j.jcis.2021.11.052

[13]  Wang, W., Xu, D., Cheng, B., Yu, J. and Jiang, C. (2017) Hybrid Carbon@TiO2 Hollow Spheres with Enhanced Photocatalytic CO2 Reduction Activity. Journal of Materials Chemistry A, 5, 5020-5029.
https://doi.org/10.1039/c6ta11121a

[14]  Shen, Q., Xue, J., Li, Y., Gao, G., Li, Q., Liu, X., et al. (2021) Construction of CdSe Polymorphic Junctions with Coherent Interface for Enhanced Photoelectrocatalytic Hydrogen Generation. Applied Catalysis B: Environmental, 282, Article ID: 119552.
https://doi.org/10.1016/j.apcatb.2020.119552

[15]  Jing, J., Yang, J., Li, W., Wu, Z. and Zhu, Y. (2021) Construction of Interfacial Electric Field via Dual‐Porphyrin Heterostructure Boosting Photocatalytic Hydrogen Evolution. Advanced Materials, 34, Article ID: 2106807.
https://doi.org/10.1002/adma.202106807

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133