|
Material Sciences 2025
ZIF-67/PANI复合材料的可控制备及电化学性能研究
|
Abstract:
本文通过利用基于钴金属有机骨架材料(ZIF-67)的高表面积和良好的结晶度作为前驱体,通过氮气气氛高温煅烧后形成C-ZIF-67材料,并通过原位聚合法,在C-ZIF-67材料表面生长密度均匀的聚苯胺(PANI)化合物,最终获得C-ZIF-67/PANI复合材料。采用CV、GCD和EIS电化学技术研究了C-ZIF-67/PANI复合电极在1 M硫酸电解液中的储能性能。最终表明,C-ZIF-67/PANI5复合电极可提供450.5 F g?1的比电容,并且在电流密度为8 A g?1下经过5000次的充放电循环测试后,比电容值仍保持初始比电容值的71%,表现其良好的循环稳定性。
In this paper, the cobalt metal-organic framework material (ZIF-67) with high surface area and good crystallinity was used as the precursor. The C-ZIF-67 material was formed after calcination at high temperature under N2 atmosphere. Then, through the in-situ polymerization method, the polyaniline (PANI) compound with a uniform density was grown on the surface of the C-ZIF-67 material, and finally the C-ZIF-67/PANI composite material was obtained. The electrochemical techniques such as cyclic voltammetry (CV), galvanostatic charge-discharge (GCD) and electrochemical impedance spectroscopy (EIS) were employed to investigate the energy storage performance of the C-ZIF-67/PANI composite electrode in 1 M sulfuric acid electrolyte. Eventually, it was demonstrated that the C-ZIF-67/PANI5 composite electrode could provide a specific capacitance of 450.5 F g?1, and after 5000 charge-discharge cycling tests at a current density of 8 A g?1, the specific capacitance value still remained 71% of the initial specific capacitance value, indicating its good cyclic stability.
[1] | Zhu, Y., Wang, J., Chu, H., Chu, Y. and Chen, H.M. (2020) In Situ/Operando Studies for Designing Next-Generation Electrocatalysts. ACS Energy Letters, 5, 1281-1291. https://doi.org/10.1021/acsenergylett.0c00305 |
[2] | Lin, S., Chang, C., Chiu, S., Pai, H., Liao, T., Hsu, C., et al. (2020) Operando Time-Resolved X-Ray Absorption Spectroscopy Reveals the Chemical Nature Enabling Highly Selective CO2 Reduction. Nature Communications, 11, Article No. 3625. https://doi.org/10.1038/s41467-020-17231-3 |
[3] | Li, M., Chen, J., Wu, W., Fang, Y. and Dong, S. (2020) Oxidase-like MOF-818 Nanozyme with High Specificity for Catalysis of Catechol Oxidation. Journal of the American Chemical Society, 142, 15569-15574. https://doi.org/10.1021/jacs.0c07273 |
[4] | Muzaffar, A., Ahamed, M.B., Deshmukh, K. and Thirumalai, J. (2019) A Review on Recent Advances in Hybrid Supercapacitors: Design, Fabrication and Applications. Renewable and Sustainable Energy Reviews, 101, 123-145. https://doi.org/10.1016/j.rser.2018.10.026 |
[5] | Bahaa, A., Balamurugan, J., Kim, N.H. and Lee, J.H. (2019) Metal-Organic Framework Derived Hierarchical Copper Cobalt Sulfide Nanosheet Arrays for High-Performance Solid-State Asymmetric Supercapacitors. Journal of Materials Chemistry A, 7, 8620-8632. https://doi.org/10.1039/c9ta00265k |
[6] | Liu, F., Luo, S., Liu, D., Chen, W., Huang, Y., Dong, L., et al. (2017) Facile Processing of Free-Standing Polyaniline/SWCNT Film as an Integrated Electrode for Flexible Supercapacitor Application. ACS Applied Materials & Interfaces, 9, 33791-33801. https://doi.org/10.1021/acsami.7b08382 |
[7] | Ahirrao, D.J., Mohanapriya, K., Wilson, H.M. and Jha, N. (2020) Solar Reduced Porous Graphene Incorporated within Polyaniline Network for High-Performance Supercapacitor Electrode. Applied Surface Science, 510, Article ID: 145485. https://doi.org/10.1016/j.apsusc.2020.145485 |
[8] | Tathavadekar, M., Biswal, M., Agarkar, S., Giribabu, L. and Ogale, S. (2014) Electronically and Catalytically Functional Carbon Cloth as a Permeable and Flexible Counter Electrode for Dye Sensitized Solar Cell. Electrochimica Acta, 123, 248-253. https://doi.org/10.1016/j.electacta.2013.12.175 |
[9] | Tiwari, A.P., Chae, S., Ojha, G.P., Dahal, B., Mukhiya, T., Lee, M., et al. (2019) Three-Dimensional Porous Carbonaceous Network with In-Situ Entrapped Metallic Cobalt for Supercapacitor Application. Journal of Colloid and Interface Science, 553, 622-630. https://doi.org/10.1016/j.jcis.2019.06.070 |
[10] | Wang, K., Zhao, P., Zhou, X., Wu, H. and Wei, Z. (2011) Flexible Supercapacitors Based on Cloth-Supported Electrodes of Conducting Polymer Nanowire Array/SWCNT Composites. Journal of Materials Chemistry, 21, 16373-16378. https://doi.org/10.1039/c1jm13722k |
[11] | Bu, Y., Zou, Y.W., Cang, R.B., Zhou, X.J., Yu, P. and Zhang, M.Y. (2024) Freestanding Electrodes with Polyaniline/Au Derived from Electrospun Carbon Nanofibers for High-Performance Supercapacitors. CrystEngComm, 26, 4985-4994. |
[12] | Chen, T., Kuo, T., Yougbaré, S., Lin, L. and Xiao, C. (2022) Novel Direct Growth of ZIF-67 Derived Co3O4 and N-Doped Carbon Composites on Carbon Cloth as Supercapacitor Electrodes. Journal of Colloid and Interface Science, 608, 493-503. https://doi.org/10.1016/j.jcis.2021.09.198 |
[13] | Venkatesh, S. and Vishista, K. (2018) Identification of the Best Chemical Equivalent Ratio to Produce Emeraldine Salt Exhibiting Better Pseudo Capacitance. Electrochimica Acta, 263, 76-84. https://doi.org/10.1016/j.electacta.2018.01.032 |
[14] | Wang, J., Guo, Z., Li, F., Yang, H., Che, H., Zhang, Z., et al. (2023) Rational Design of Ternary NiCo2Alx-LDH Coupled with PANI Coated Nitrogen-Doped Carbon Capsule for High-Performance Asymmetric Supercapacitors. Journal of Electroanalytical Chemistry, 931, Article ID: 117189. https://doi.org/10.1016/j.jelechem.2023.117189 |
[15] | Dandekar, M., Arabale, G. and Vijayamohanan, K. (2005) Preparation and Characterization of Composite Electrodes of Coconut-Shell-Based Activated Carbon and Hydrous Ruthenium Oxide for Supercapacitors. Journal of Power Sources, 141, 198-203. https://doi.org/10.1016/j.jpowsour.2004.09.008 |
[16] | Li, X., Rong, J. and Wei, B. (2010) Electrochemical Behavior of Single-Walled Carbon Nanotube Supercapacitors under Compressive Stress. ACS Nano, 4, 6039-6049. https://doi.org/10.1021/nn101595y |