|
Material Sciences 2025
Mn2+修饰二维层状Ti3C2Tx用于高性能超级电容器负极材料
|
Abstract:
二维层状Ti3C2Tx因其独特的二维结构、金属导电性、丰富的化学表面、负的工作电势窗口,被认为非常具有应用前景的超级电容器负极材料。然而,二维纳米片层不可避免的堆叠导致其活性表面无法充分利用,限制其电化学性能。本文界面工程调控Ti3C2Tx表面,提高其活性表面利用率,提高其电荷存储能力。首先采用碱性溶液KOH预处理Ti3C2Tx,定向减少表面-F官能团,得到K+嵌入到Ti3C2Tx;再通过离子交换,实现过渡金属Mn2+离子插层,成功制备Mn2+修饰的Ti3C2Tx材料(Mn2+-Ti3C2Tx)。由于所制备Mn2+-Ti3C2Tx纳米片表面的Mn原子d轨道对周围-O官能团有很强的施主效应,对电解质离子有更强的吸附作用,能够促进电解质离子的输运,促进电化学反应在表面上进行,使得Mn2+-Ti3C2Tx电极材料在电流密度为1 A g?1时展现出323F g?1的高比容量。并且,在电流密度为20 A g?1时,电容保持率为83%。本文报道了一种高性能的Mn2+修饰的Ti3C2Tx材料,为超级电容器电极材料的开发提供了新的思路。
Two-dimensional layered Ti3C2Tx is considered a very promising negative electrode material for supercapacitor applications due to its unique two-dimensional structure, metallic conductivity, abundant chemical surfaces, and negative working potential window. However, the unavoidable stacking of 2D nanosheets leads to the underutilization of its active surface, limiting its electrochemical performance. In this paper, interfacial engineering modulates the Ti3C2Tx surface to improve its active surface utilization and enhance its charge storage capacity. Firstly, Ti3C2Tx was pretreated with an alkaline solution of KOH to directionally reduce the -F surface functional groups, obtaining K+-embedded Ti3C2Tx. Subsequently, through ion exchange, the intercalation of Mn2+ transition metal ions was achieved, successfully fabricating Mn2+-modified Ti3C2Tx material (Mn2+-Ti3C2Tx). Owing to the strong donor effect of the d orbitals of Mn atoms on the surface of the prepared Mn2+-Ti3C2Tx nanosheets on the surrounding -O functional groups, there is a stronger adsorption of electrolyte ions, which promotes the transport of electrolyte ions and facilitates the electrochemical reaction on the surface, enabling the
[1] | Cook, T.R., Dogutan, D.K., Reece, S.Y., Surendranath, Y., Teets, T.S. and Nocera, D.G. (2010) Solar Energy Supply and Storage for the Legacy and Nonlegacy Worlds. Chemical Reviews, 110, 6474-6502. https://doi.org/10.1021/cr100246c |
[2] | Rui, X., Tan, H. and Yan, Q. (2014) Nanostructured Metal Sulfides for Energy Storage. Nanoscale, 6, 9889-9924. https://doi.org/10.1039/c4nr03057e |
[3] | Tan, C., Lai, Z. and Zhang, H. (2017) Ultrathin Two‐Dimensional Multinary Layered Metal Chalcogenide Nanomaterials. Advanced Materials, 29, Article 1701392. https://doi.org/10.1002/adma.201701392 |
[4] | Chen, K. and Xue, D. (2016) Materials Chemistry toward Electrochemical Energy Storage. Journal of Materials Chemistry A, 4, 7522-7537. https://doi.org/10.1039/c6ta01527a |
[5] | Kumar, R., Joanni, E., Sahoo, S., Shim, J., Tan, W.K., Matsuda, A., et al. (2022) An Overview of Recent Progress in Nanostructured Carbon-Based Supercapacitor Electrodes: From Zero to Bi-Dimensional Materials. Carbon, 193, 298-338. https://doi.org/10.1016/j.carbon.2022.03.023 |
[6] | Dubey, P., Shrivastav, V., Maheshwari, P.H. and Sundriyal, S. (2020) Recent Advances in Biomass Derived Activated Carbon Electrodes for Hybrid Electrochemical Capacitor Applications: Challenges and Opportunities. Carbon, 170, 1-29. https://doi.org/10.1016/j.carbon.2020.07.056 |
[7] | Theerthagiri, J., Durai, G., Karuppasamy, K., Arunachalam, P., Elakkiya, V., Kuppusami, P., et al. (2018) Recent Advances in 2-D Nanostructured Metal Nitrides, Carbides, and Phosphides Electrodes for Electrochemical Supercapacitors—A Brief Review. Journal of Industrial and Engineering Chemistry, 67, 12-27. https://doi.org/10.1016/j.jiec.2018.06.038 |
[8] | Peng, X., Peng, L., Wu, C. and Xie, Y. (2014) Two Dimensional Nanomaterials for Flexible Supercapacitors. Chemical Society Reviews, 43, 3303-3323. https://doi.org/10.1039/c3cs60407a |
[9] | Guo, Y., Xu, K., Wu, C., Zhao, J. and Xie, Y. (2015) Surface Chemical-Modification for Engineering the Intrinsic Physical Properties of Inorganic Two-Dimensional Nanomaterials. Chemical Society Reviews, 44, 637-646. https://doi.org/10.1039/c4cs00302k |
[10] | Chen, P., Tong, Y., Wu, C. and Xie, Y. (2018) Surface/Interfacial Engineering of Inorganic Low-Dimensional Electrode Materials for Electrocatalysis. Accounts of Chemical Research, 51, 2857-2866. https://doi.org/10.1021/acs.accounts.8b00266 |
[11] | Hong Ng, V.M., Huang, H., Zhou, K., Lee, P.S., Que, W., Xu, J.Z., et al. (2017) Recent Progress in Layered Transition Metal Carbides and/or Nitrides (MXenes) and Their Composites: Synthesis and Applications. Journal of Materials Chemistry A, 5, 3039-3068. https://doi.org/10.1039/c6ta06772g |
[12] | Sun, S., Liao, C., Hafez, A.M., Zhu, H. and Wu, S. (2018) Two-Dimensional MXenes for Energy Storage. Chemical Engineering Journal, 338, 27-45. https://doi.org/10.1016/j.cej.2017.12.155 |
[13] | Zhang, X., Zhang, Z. and Zhou, Z. (2018) MXene-Based Materials for Electrochemical Energy Storage. Journal of Energy Chemistry, 27, 73-85. https://doi.org/10.1016/j.jechem.2017.08.004 |
[14] | Li, X., Huang, Z., Shuck, C.E., Liang, G., Gogotsi, Y. and Zhi, C. (2022) MXene Chemistry, Electrochemistry and Energy Storage Applications. Nature Reviews Chemistry, 6, 389-404. https://doi.org/10.1038/s41570-022-00384-8 |
[15] | Xu, X., Zhang, Y., Sun, H., Zhou, J., Yang, F., Li, H., et al. (2021) Progress and Perspective: MXene and MXene‐Based Nanomaterials for High‐Performance Energy Storage Devices. Advanced Electronic Materials, 7, Article 2000967. https://doi.org/10.1002/aelm.202000967 |
[16] | Lukatskaya, M.R., Bak, S., Yu, X., Yang, X., Barsoum, M.W. and Gogotsi, Y. (2015) Probing the Mechanism of High Capacitance in 2D Titanium Carbide Using in Situ X‐Ray Absorption Spectroscopy. Advanced Energy Materials, 5, Article 1500589. https://doi.org/10.1002/aenm.201500589 |
[17] | Shao, H., Xu, K., Wu, Y., Iadecola, A., Liu, L., Ma, H., et al. (2020) Unraveling the Charge Storage Mechanism of Ti3C2Tx Mxene Electrode in Acidic Electrolyte. ACS Energy Letters, 5, 2873-2880. https://doi.org/10.1021/acsenergylett.0c01290 |
[18] | Ghidiu, M., Lukatskaya, M.R., Zhao, M., Gogotsi, Y. and Barsoum, M.W. (2014) Conductive Two-Dimensional Titanium Carbide ‘Clay’ with High Volumetric Capacitance. Nature, 516, 78-81. https://doi.org/10.1038/nature13970 |
[19] | Xu, J., You, J., Wang, L., Wang, Z. and Zhang, H. (2022) MXenes Serving Aqueous Supercapacitors: Preparation, Energy Storage Mechanism and Electrochemical Performance Enhancement. Sustainable Materials and Technologies, 33, e00490. https://doi.org/10.1016/j.susmat.2022.e00490 |
[20] | Ren, S., Xu, J., Cheng, L., Gao, X. and Wang, S. (2021) Amine-Assisted Delaminated 2D Ti3C2Tx MXenes for High Specific Capacitance in Neutral Aqueous Electrolytes. ACS Applied Materials & Interfaces, 13, 35878-35888. https://doi.org/10.1021/acsami.1c06161 |
[21] | Zhang, L., Wang, Z., Chen, W., Yuan, R., Zhan, K., Zhu, M., et al. (2021) Fe3O4 Nanoplates Anchored on Ti3C2Tx MXene with Enhanced Pseudocapacitive and Electrocatalytic Properties. Nanoscale, 13, 15343-15351. https://doi.org/10.1039/d1nr04383h |
[22] | Sun, N., Guan, Z., Zhu, Q., Anasori, B., Gogotsi, Y. and Xu, B. (2020) Enhanced Ionic Accessibility of Flexible MXene Electrodes Produced by Natural Sedimentation. Nano-Micro Letters, 12, Article No. 89. https://doi.org/10.1007/s40820-020-00426-0 |
[23] | Li, K., Li, J., Zhu, Q. and Xu, B. (2022) Three‐Dimensional MXenes for Supercapacitors: A Review. Small Methods, 6, Article 2101537. https://doi.org/10.1002/smtd.202101537 |
[24] | Nasrin, K., Sudharshan, V., Subramani, K. and Sathish, M. (2022) Insights into 2D/2D MXene Heterostructures for Improved Synergy in Structure toward Next‐Generation Supercapacitors: A Review. Advanced Functional Materials, 32, Article 2110267. https://doi.org/10.1002/adfm.202110267 |
[25] | Li, L., Zhang, M., Zhang, X. and Zhang, Z. (2017) New Ti3C2 Aerogel as Promising Negative Electrode Materials for Asymmetric Supercapacitors. Journal of Power Sources, 364, 234-241. https://doi.org/10.1016/j.jpowsour.2017.08.029 |
[26] | Song, Y., Hu, L. and Xin, Y. (2022) Nanosized V2CTx with Boosting Super Capacitance via Engineering Alkalization Assisted K+ Interlayer Coordination. Journal of The Electrochemical Society, 169, Article 072510. https://doi.org/10.1149/1945-7111/ac82cb |
[27] | Li, Z., Jiang, M., Wu, F., Wu, L., Zhang, X. and Li, L. (2024) Synergistic in-situ Intercalation and Surface Modification Strategy for Ti3C2Tx MXene-Based Supercapacitors with Enhanced Electrochemical Energy Storage. Journal of Energy Storage, 84, Article 110772. https://doi.org/10.1016/j.est.2024.110772 |
[28] | Zhan, C., Naguib, M., Lukatskaya, M., Kent, P.R.C., Gogotsi, Y. and Jiang, D. (2018) Understanding the MXene Pseudocapacitance. The Journal of Physical Chemistry Letters, 9, 1223-1228. https://doi.org/10.1021/acs.jpclett.8b00200 |
[29] | Wang, C., Wei, S., Zhang, P., Zhu, K., Song, P., Chen, S., et al. (2020) Cation-Intercalated Engineering and X-Ray Absorption Spectroscopic Characterizations of Two Dimensional MXenes. Chinese Chemical Letters, 31, 969-979. https://doi.org/10.1016/j.cclet.2019.08.045 |
[30] | Fang, R., Lu, C., Chen, A., Wang, K., Huang, H., Gan, Y., et al. (2019) 2D MXene‐Based Energy Storage Materials: Interfacial Structure Design and Functionalization. ChemSusChem, 13, 1409-1419. https://doi.org/10.1002/cssc.201902537 |
[31] | Mashtalir, O., Naguib, M., Mochalin, V.N., Dall’Agnese, Y., Heon, M., Barsoum, M.W., et al. (2013) Intercalation and Delamination of Layered Carbides and Carbonitrides. Nature Communications, 4, Article No. 1716. https://doi.org/10.1038/ncomms2664 |