|
Pure Mathematics 2025
基于改进蜣螂算法的车机协同巡检路径规划方法
|
Abstract:
针对电网巡检任务中巡检车与无人机协同作业的问题,本文提出了一种基于改进蜣螂算法的路径规划方法,并构建了巡检车与无人机动态协同作业的路径规划模型。为提升蜣螂算法的搜索效率和收敛性能,本文做出了如下改进:首先,采用Logistic混沌映射优化初始解的分布,从而提高搜索的多样性;其次,在蜣螂滚动阶段引入鱼鹰算法的全局搜索策略,增强算法的全局搜索能力,提升收敛速度和稳定性;最后,在蜣螂觅食阶段引入自适应t分布策略,增强局部寻优能力,避免陷入局部最优解。实验结果表明,改进后的蜣螂算法在CEC2021标准函数集测试中,相较于基础蜣螂算法和其他对比算法,表现出更好的求解精度和收敛速度。在实际路径规划算例中,提出的方法在巡检车车速降低至30%、50%的情况下仍能有效求解,并在正常场景下节省了6.38分钟的计算时间,表明该方法具有较好的实用性和适应性。
To address the collaborative operation problem between inspection vehicles and drones in power grid inspection tasks, this paper presents a path planning method based on an improved dung beetle algorithm and establishes a dynamic collaborative operation model for the path planning of both inspection vehicles and drones. In order to enhance the search efficiency and convergence performance of the dung beetle algorithm, several improvements are introduced: first, the Logistic chaotic mapping is employed to optimize the distribution of initial solutions, thereby increasing search diversity; second, a global search strategy based on the Osprey algorithm is incorporated into the rolling phase of the dung beetle algorithm, enhancing its global search capability and improving both convergence speed and stability; third, an adaptive t-distribution strategy is introduced in the foraging phase to bolster local optimization ability and prevent premature convergence to local optima. Experimental results demonstrate that the improved dung beetle algorithm exhibits superior solution accuracy and convergence speed compared to the basic dung beetle algorithm and several other benchmark algorithms in tests using the CEC2021 standard function set. In practical path planning case studies, the proposed method effectively solves the problem even when the inspection vehicle’s speed is reduced to 30% and 50% and reduces the computation time by 6.38 minutes in normal scenarios, thus demonstrating its practicality and adaptability.
[1] | 冯新江, 林泽科, 陈岳贤, 等. 无人机电力巡检系统研究[J]. 机电信息, 2021(5): 1-4. |
[2] | 毛建旭, 贺振宇, 王耀南, 等. 电力巡检机器人路径规划技术及应用综述[J]. 控制与决策, 2023, 38(11): 3009-3024. |
[3] | Roberti, R. and Ruthmair, M. (2021) Exact Methods for the Traveling Salesman Problem with Drone. Transportation Science, 55, 315-335. https://doi.org/10.1287/trsc.2020.1017 |
[4] | 熊典. 输电线路无人机巡检路径规划研究及应用[D]: [硕士学位论文]. 武汉: 武汉科技大学, 2014. |
[5] | 王菊. 面向电力杆塔巡检的车辆与车载无人机协同路径规划方法[D]: [硕士学位论文]. 合肥: 合肥工业大学, 2020. |
[6] | 周天任. 车载无人机电力巡检路径规划问题研究[D]: [硕士学位论文]. 长沙: 国防科技大学, 2018. |
[7] | 曹峰. 输电线路车机协同巡检路径规划技术研究[D]: [硕士学位论文]. 大连: 大连理工大学, 2021. |
[8] | 曹峰, 崔少华, 荆治家, 等. 面向巡检车与无人机协同电力巡检的车辆路径规划方法[J]. 交通运输工程与信息学报, 2022, 20(2): 95-104. |
[9] | Liu, Y., Shi, J., Liu, Z., Huang, J. and Zhou, T. (2019) Two-Layer Routing for High-Voltage Powerline Inspection by Cooperated Ground Vehicle and Drone. Energies, 12, Article 1385. https://doi.org/10.3390/en12071385c |
[10] | 梁华尘, 周稳, 倪旭东, 等. 面向多目标联合电力巡检的车载无人机协同巡检路径规划方法[J]. 南方电网技术, 2023, 17(11): 138-147. |
[11] | 傅睿. 基于车辆和无人机协同巡检的路径规划算法的研究[D]: [硕士学位论文]. 武汉: 华中科技大学, 2018. |
[12] | Huang, Z., Wang, H., Zhang, T. and Yu, B. (2021) The Collaborative Power Inspection Task Allocation Method of “Unmanned Aerial Vehicle and Operating Vehicle”. IEEE Access, 9, 62926-62934. https://doi.org/10.1109/access.2021.3074710 |
[13] | Xue, J. and Shen, B. (2022) Dung Beetle Optimizer: A New Meta-Heuristic Algorithm for Global Optimization. The Journal of Supercomputing, 79, 7305-7336. https://doi.org/10.1007/s11227-022-04959-6 |
[14] | 王海群, 宋国章, 葛超. 基于改进蜣螂算法的无人机三维路径规划[J]. 电光与控制, 2024, 31(11): 55-61, 82. |
[15] | 赵鑫, 王东丽, 彭泓, 等. 基于多策略改进蜣螂算法优化的变压器故障诊断[J]. 电力系统保护与控制, 2024, 52(6): 120-130. |
[16] | Yuan, Q., Wu, L., Huang, Y., Guo, Z. and Li, N. (2023) Water-Body Detection from Spaceborne SAR Images with DBO-CNN. IEEE Geoscience and Remote Sensing Letters, 20, 1-5. https://doi.org/10.1109/lgrs.2023.3325939 |
[17] | Zhang, Y., Ma, T., Li, T. and Wang, Y. (2023) Short-Term Load Forecasting Based on DBO-LSTM Model. 2023 3rd International Conference on Energy Engineering and Power Systems (EEPS), Dali, 28-30 July 2023, 972-977. https://doi.org/10.1109/eeps58791.2023.10257027 |
[18] | 陈曦明, 张军伟, 张冉, 等. 一种改进鱼鹰优化算法及其应用[J]. 重庆理工大学学报(自然科学), 2024, 38(3): 122-133. |
[19] | Trojovský, P. and Dehghani, M. (2023) Subtraction-Average-Based Optimizer: A New Swarm-Inspired Metaheuristic Algorithm for Solving Optimization Problems. Biomimetics, 8, Article 149. https://doi.org/10.3390/biomimetics8020149 |
[20] | Mirjalili, S., Mirjalili, S.M. and Lewis, A. (2014) Grey Wolf Optimizer. Advances in Engineering Software, 69, 46-61. https://doi.org/10.1016/j.advengsoft.2013.12.007 |
[21] | 郑新宇, 李媛, 刘晓琳. 改进北方苍鹰优化算法的收敛性及其性能对比分析[J]. 计算机科学与探索, 2024, 18(12): 3203-3218. |
[22] | 王坚浩, 张亮, 史超, 等. 基于混沌搜索策略的鲸鱼优化算法[J]. 控制与决策, 2019, 34(9): 1893-1900. |
[23] | 刘小龙, 梁彤缨. 基于方形邻域和随机数组的哈里斯鹰优化算法[J]. 控制与决策, 2022, 37(10): 2467-2476. |