We present a comprehensive mathematical framework establishing the foundations of holographic quantum computing, a novel paradigm that leverages holographic phenomena to achieve superior error correction and algorithmic efficiency. We rigorously demonstrate that quantum information can be encoded and processed using holographic principles, establishing fundamental theorems characterizing the error-correcting properties of holographic codes. We develop a complete set of universal quantum gates with explicit constructions and prove exponential speedups for specific classes of computational problems. Our framework demonstrates that holographic quantum codes achieve a code rate scaling as
, superior to traditional quantum LDPC codes, while providing inherent protection against errors via geometric properties of the code structures. We prove a threshold theorem establishing that arbitrary quantum computations can be performed reliably when physical error rates fall below a constant threshold. Notably, our analysis suggests certain algorithms, including those involving high-dimensional state spaces and long-range interactions, achieve exponential speedups over both classical and conventional quantum approaches. This work establishes the theoretical foundations for a new approach to quantum computation that provides natural fault tolerance and scalability, directly addressing longstanding challenges of the field.
References
[1]
Nielsen, M.A. and Chuang, I.L. (2010) Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press.
[2]
Arute, F., Arya, K., Babbush, R., et al. (2019) Quantum Supremacy Using a Programmable Superconducting Processor. Nature, 574, 505-510.
[3]
Preskill, J. (2018) Quantum Computing in the NISQ Era and Beyond. Quantum, 2, 79. https://doi.org/10.22331/q-2018-08-06-79
[4]
Dennis, E., Kitaev, A., Landahl, A. and Preskill, J. (2002) Topological Quantum Memory. Journal of Mathematical Physics, 43, 4452-4505. https://doi.org/10.1063/1.1499754
[5]
Kjaergaard, M., Schwartz, M.E., Braumüller, J., Krantz, P., Wang, J.I., Gustavsson, S., et al. (2020) Superconducting Qubits: Current State of Play. Annual Review of Condensed Matter Physics, 11, 369-395. https://doi.org/10.1146/annurev-conmatphys-031119-050605
[6]
Montanaro, A. (2016) Quantum Algorithms: An Overview. NPJ Quantum Information, 2, Article No. 15023. https://doi.org/10.1038/npjqi.2015.23
[7]
‘t Hooft, G. (1993) Dimensional Reduction in Quantum Gravity.
[8]
Susskind, L. (1995) The World as a Hologram. Journal of Mathematical Physics, 36, 6377-6396. https://doi.org/10.1063/1.531249
[9]
Maldacena, J. (1999) The Large-N Limit of Superconformal Field Theories and Super-Gravity. International Journal of Theoretical Physics, 38, 1113-1133. https://doi.org/10.1023/a:1026654312961
[10]
Almheiri, A., Dong, X. and Harlow, D. (2015) Bulk Locality and Quantum Error Correction in AdS/CFT. Journal of High Energy Physics, 2015, 163. https://doi.org/10.1007/jhep04(2015)163
[11]
Dong, X., Harlow, D. and Wall, A.C. (2016) Reconstruction of Bulk Operators within the Entanglement Wedge in Gauge-Gravity Duality. Physical Review Letters, 117, Article ID: 021601. https://doi.org/10.1103/physrevlett.117.021601
[12]
Pastawski, F., Yoshida, B., Harlow, D. and Preskill, J. (2015) Holographic Quantum Error-Correcting Codes: Toy Models for the Bulk/Boundary Correspondence. Journal of High Energy Physics, 2015, 149. https://doi.org/10.1007/jhep06(2015)149
[13]
Harlow, D. (2017) The Ryu-Takayanagi Formula from Quantum Error Correction. Communications in Mathematical Physics, 354, 865-912. https://doi.org/10.1007/s00220-017-2904-z
[14]
Brown, A.R., Roberts, D.A., Susskind, L., Swingle, B. and Zhao, Y. (2016) Complexity, Action, and Black Holes. Physical Review D, 93, Article ID: 086006. https://doi.org/10.1103/physrevd.93.086006
[15]
Susskind, L. (2016) Computational Complexity and Black Hole Horizons. Fortschritte der Physik, 64, 24-43. https://doi.org/10.1002/prop.201500092
[16]
Brown, A.R. and Susskind, L. (2018) Second Law of Quantum Complexity. Physical Review D, 97, Article ID: 086015. https://doi.org/10.1103/physrevd.97.086015
[17]
Nielsen, M.A. and Chuang, I.L. (2000) Quantum Computation and Quantum Information. Cambridge University Press.
[18]
Wilde, M.M. (2013) Quantum Information Theory. Cambridge University Press. https://doi.org/10.1017/cbo9781139525343
[19]
Kraus, K. (1983) States, Effects and Operations: Fundamental Notions of Quantum Theory. Lecture Notes in Physics, Vol. 190. Springer-Verlag.
[20]
Gottesman, D. (1997) Stabilizer Codes and Quantum Error Correction. Ph.D. Thesis, California Institute of Technology.
[21]
Knill, E. and Laflamme, R. (1997) Theory of Quantum Error-Correcting Codes. Physical Review A, 55, 900-911. https://doi.org/10.1103/physreva.55.900
[22]
Aharonov, D. and Ben-Or, M. (1997) Fault-Tolerant Quantum Computation with Constant Error. Proceedings of the 29th Annual ACM symposium on Theory of Computing-STOC‘97, El Paso, 4-6 May 1997, 176-188. https://doi.org/10.1145/258533.258579
[23]
Hawking, S.W. and Ellis, G.F.R. (1973). The Large Scale Structure of Space-Time. Cambridge University Press. https://doi.org/10.1017/cbo9780511524646
[24]
Witten, E. (1998) Anti De Sitter Space and Holography. Advances in Theoretical and Mathematical Physics, 2, 253-291. https://doi.org/10.4310/atmp.1998.v2.n2.a2
[25]
Ryu, S. and Takayanagi, T. (2006) Holographic Derivation of Entanglement Entropy from the Anti-de Sitter Space/Conformal Field Theory Correspondence. Physical Review Letters, 96, Article ID: 181602. https://doi.org/10.1103/physrevlett.96.181602
[26]
Di Francesco, P., Mathieu, P. and Sénéchal, D. (1997) Conformal Field Theory. Springer-Verlag.
[27]
Pappadopulo, D., Rychkov, S., Espin, J. and Rattazzi, R. (2012) Operator Product Expansion Convergence in Conformal Field Theory. Physical Review D, 86, Article ID: 105043. https://doi.org/10.1103/physrevd.86.105043
[28]
Freedman, D.Z., Mathur, S.D., Matusis, A. and Rastelli, L. (1999) Correlation Functions in the CFT(d)/AdS(d+1) Correspondence. Nuclear Physics B, 546, 96-118. https://doi.org/10.1016/s0550-3213(99)00053-x
[29]
Yang, Z., Hayden, P. and Qi, X. (2016) Bidirectional Holographic Codes and sub-AdS Locality. Journal of High Energy Physics, 2016, 175. https://doi.org/10.1007/jhep01(2016)175
[30]
Gottesman, D. (2010) An Introduction to Quantum Error Correction and Fault-Tolerant Quantum Computation. Proceedings of Symposia in Applied Mathematics, 68, 13-58.
[31]
Bravyi, S. and Kitaev, A. (2005) Universal Quantum Computation with Ideal Clifford Gates and Noisy Ancillas. Physical Review A, 71, Article ID: 022316. https://doi.org/10.1103/physreva.71.022316
[32]
Kitaev, A.Y. (2003) Fault-Tolerant Quantum Computation by Anyons. Annals of Physics, 303, 2-30. https://doi.org/10.1016/s0003-4916(02)00018-0
[33]
Reichardt, B.W. (2005) Quantum Universality from Magic States Distillation Applied to CSS Codes. Quantum Information Processing, 4, 251-264. https://doi.org/10.1007/s11128-005-7654-8