全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Nucleotide Relative Molecular Similarity within Anti-Emetic/Pro-Kinetic Drug Structures

DOI: 10.4236/jbm.2025.131018, PP. 215-229

Keywords: Gastroparesis, Adenine Nucleotides, Neurotransmitter Agents, Molecular Structure

Full-Text   Cite this paper   Add to My Lib

Abstract:

The physiology of the central and enteric nervous systems and gastric muscle contributes to the complexities encountered in the research and clinical management of gastroparesis. A wide range of prescription drugs target the underlying neurotransmitter imbalances and adjust nucleotide levels in appropriate tissues, but treatment is unsatisfactory, as our understanding of the condition is far from complete. In this study, computational software is used to focus on the adenine nucleotide, ATP, as a comparative template for the structures of drugs used in gastroparesis treatment. The results demonstrate that muscarinic, dopamine, serotonin (5-HT) and histamine receptor ligand classes relate structurally and differentially to the molecular structure of ATP. In these neurotransmitter classes, compounds do not target cell membrane receptor G-protein signal transduction in a manner that provides a single mechanism for improving gastroparesis symptoms. The exploration of alternative nucleotide-based deficiencies of KATP channels, Na+/K+ATPases and guanine nucleotide directed nitrergic mechanisms should enhance our experimental approach to understanding this condition.

References

[1]  Camilleri, M. and Sanders, K.M. (2022) Gastroparesis. Gastroenterology, 162, 68-87.e1.
https://doi.org/10.1053/j.gastro.2021.10.028

[2]  Parkman, H.P. (2015) Idiopathic Gastroparesis. Gastroenterology Clinics of North America, 44, 59-68.
https://doi.org/10.1016/j.gtc.2014.11.015

[3]  Fass, R., McCallum, R.W. and Parkman, H.P. (2009) Treatment Challenges in the Management of Gastroparesis-Related GERD. Gastroenterology & Hepatology, 5, 4-16.
[4]  Drossman, D.A. and Hasler, W.L. (2016) Rome IV—Functional GI Disorders: Disorders of Gut-Brain Interaction. Gastroenterology, 150, 1257-1261.
https://doi.org/10.1053/j.gastro.2016.03.035

[5]  Kitamura, A., Torii, K., Uneyama, H. and Niijima, A. (2010) Role Played by Afferent Signals from Olfactory, Gustatory and Gastrointestinal Sensors in Regulation of Autonomic Nerve Activity. Biological and Pharmaceutical Bulletin, 33, 1778-1782.
https://doi.org/10.1248/bpb.33.1778

[6]  Mahdavinia, M., Bishehsari, F., Hayat, W., Codispoti, C.D., Sarrafi, S., Husain, I., et al. (2016) Prevalence of Allergic Rhinitis and Asthma in Patients with Chronic Rhinosinusitis and Gastroesophageal Reflux Disease. Annals of Allergy, Asthma & Immunology, 117, 158-162.e1.
https://doi.org/10.1016/j.anai.2016.05.018

[7]  Finocchio, E., Locatelli, F., Sanna, F., Vesentini, R., Marchetti, P., Spiteri, G., et al. (2021) Gastritis and Gastroesophageal Reflux Disease Are Strongly Associated with Non-Allergic Nasal Disorders. BMC Pulmonary Medicine, 21, Article No. 53.
https://doi.org/10.1186/s12890-020-01364-8

[8]  Dudekula, A., Rahim, S. and Bielefeldt, K. (2014) Time Trends in Gastroparesis Treatment. Digestive Diseases and Sciences, 59, 2656-2665.
https://doi.org/10.1007/s10620-014-3369-y

[9]  Bills, S., Shine, A., Williams, J.C., Mathur, P., Kedar, A., Daniels, M., et al. (2024) Difference in Cyclic versus Non-Cyclic Symptom Patterns in Patients with the Symptoms of Gastroparesis Undergoing Bioelectric Therapy. Digestive Diseases and Sciences, 69, 1722-1730.
https://doi.org/10.1007/s10620-024-08303-1

[10]  Sanger, G.J. and Andrews, P.L.R. (2023) Review Article: An Analysis of the Pharmacological Rationale for Selecting Drugs to Inhibit Vomiting or Increase Gastric Emptying during Treatment of Gastroparesis. Alimentary Pharmacology & Therapeutics, 57, 962-978.
https://doi.org/10.1111/apt.17466

[11]  Muller-Lissner, S.A., Fraas, C and Harti, A. (1986) Cisapride Offsets Dopamine-Induced Slowing of Fasting Gastric Emptying. Digestive Diseases and Sciences, 31, 807-810.
https://doi.org/10.1007/bf01296047

[12]  Ztaou, S. and Amalric, M. (2019) Contribution of Cholinergic Interneurons to Striatal Pathophysiology in Parkinson’s Disease. Neurochemistry International, 126, 1-10.
https://doi.org/10.1016/j.neuint.2019.02.019

[13]  Sanger, G.J. (2009) Translating 5-HT4 Receptor Pharmacology. Neurogastroenterology & Motility, 21, 1235-1238.
https://doi.org/10.1111/j.1365-2982.2009.01425.x

[14]  Sanger, G.J. and Andrews, P.L.R. (2018) A History of Drug Discovery for Treatment of Nausea and Vomiting and the Implications for Future Research. Frontiers in Pharmacology, 9, Article 913.
https://doi.org/10.3389/fphar.2018.00913

[15]  Zikos, T.A., Nguyen, L., Kamal, A., Fernandez-Becker, N., Regalia, K., Nandwani, M., et al. (2020) Marijuana, Ondansetron, and Promethazine Are Perceived as Most Effective Treatments for Gastrointestinal Nausea. Digestive Diseases and Sciences, 65, 3280-3286.
https://doi.org/10.1007/s10620-020-06195-5

[16]  Ingrosso, M.R., Camilleri, M., Tack, J., Ianiro, G., Black, C.J. and Ford, A.C. (2023) Efficacy and Safety of Drugs for Gastroparesis: Systematic Review and Network Meta-analysis. Gastroenterology, 164, 642-654.
https://doi.org/10.1053/j.gastro.2022.12.014

[17]  (2024) IUPHAR/BPS Guide to Pharmacology.
https://www.guidetopharmacology.org
[18]  Belkacemi, L. and Darmani, N.A. (2020) Dopamine Receptors in Emesis: Molecular Mechanisms and Potential Therapeutic Function. Pharmacological Research, 161, Article ID: 105124.
https://doi.org/10.1016/j.phrs.2020.105124

[19]  McDonough, W., Aragon, I.V., Rich, J., Murphy, J.M., Abou Saleh, L., Boyd, A., et al. (2020) Pan-Selective Inhibition of Camp-Phosphodiesterase 4 (PDE4) Induces Gastroparesis in Mice. The FASEB Journal, 34, 12533-12548.
https://doi.org/10.1096/fj.202001016rr

[20]  Drosatos, K., Bharadwaj, K.G., Lymperopoulos, A., Ikeda, S., Khan, R., Hu, Y., et al. (2011) Cardiomyocyte Lipids Impair Β-Adrenergic Receptor Function via PKC Activation. American Journal of Physiology-Endocrinology and Metabolism, 300, E489-E499.
https://doi.org/10.1152/ajpendo.00569.2010

[21]  Yadav, S.K., Sharma, P., Shah, S.D., Panettieri, R.A., Kambayashi, T., Penn, R.B., et al. (2021) Autocrine Regulation of Airway Smooth Muscle Contraction by Diacylglycerol Kinase. Journal of Cellular Physiology, 237, 603-616.
https://doi.org/10.1002/jcp.30528

[22]  Takeda, K., Taniyama, K., Kuno, T., Sano, I., Ishikawa, T., Ohmura, I, and Tanaka, C. (1991) Clebopride Enhances Contractility of the Guinea Pig Stomach by Blocking Peripheral D2 Dopamine Receptor and Alpha-2 Adrenoceptor. The Journal of Pharmacology and Experimental Therapeutics, 257, 806-811.
[23]  Asano, T., Aida, S., Suemasu, S., Tahara, K., Tanaka, K. and Mizushima, T. (2015) Aldioxa Improves Delayed Gastric Emptying and Impaired Gastric Compliance, Pathophysiologic Mechanisms of Functional Dyspepsia. Scientific Reports, 5, Article No. 17519.
https://doi.org/10.1038/srep17519

[24]  Kusunoki, M. Taniyama, K. and Tanaka, C. (1985) Dopamine Regulation of [3H] Acetylcholine Release from Guinea-Pig Stomach. The Journal of Pharmacology and Experimental Therapy, 234, 713-719.
[25]  Anselmi, L., Toti, L., Bove, C. and Travagli, R.A. (2017) Vagally Mediated Effects of Brain Stem Dopamine on Gastric Tone and Phasic Contractions of the Rat. American Journal of Physiology-Gastrointestinal and Liver Physiology, 313, G434-G441.
https://doi.org/10.1152/ajpgi.00180.2017

[26]  Nagahata, Y., Azumi, Y., Kawakita, N., Wada, T. and Saitoh, Y. (1995) Inhibitory Effect of Dopamine on Gastric Motility in Rats. Scandinavian Journal of Gastroenterology, 30, 880-885.
https://doi.org/10.3109/00365529509101595

[27]  Coulie, B., Tack, J., Maes, B., Geypens, B., De Roo, M. and Janssens, J. (1997) Sumatriptan, a Selective 5-HT1 Receptor Agonist, Induces a Lag Phase for Gastric Emptying of Liquids in Humans. American Journal of Physiology-Gastrointestinal and Liver Physiology, 272, G902-G908.
https://doi.org/10.1152/ajpgi.1997.272.4.g902

[28]  Coulie, B., Tack, J., Sifrim, D., Andrioli, A. and Janssens, J. (1999) Role of Nitric Oxide in Fasting Gastric Fundus Tone and in 5-HT1 Receptor-Mediated Relaxation of Gastric Fundus. American Journal of Physiology-Gastrointestinal and Liver Physiology, 276, G373-G377.
https://doi.org/10.1152/ajpgi.1999.276.2.g373

[29]  Min, Y.W., Hong, Y.S., Ko, E., Lee, J., Ahn, K.D., Bae, J.M., et al. (2016) Nitrergic Pathway Is the Main Contributing Mechanism in the Human Gastric Fundus Relaxation: An in Vitro Study. PLOS ONE, 11, e0162146.
https://doi.org/10.1371/journal.pone.0162146

[30]  Idrizaj, E., Traini, C., Vannucchi, M.G. and Baccari, M.C. (2021) Nitric Oxide: From Gastric Motility to Gastric Dysmotility. International Journal of Molecular Sciences, 22, Article 9990.
https://doi.org/10.3390/ijms22189990

[31]  Southard, B.T. and Khalili Y.A. (2024) Promethazine. StatPearls.
[32]  Mena-Avila, E., Márquez-Gómez, R., Aquino-Miranda, G., Nieto-Alamilla, G. and Arias-Montaño, J. (2018) Clobenpropit, a Histamine H 3 Receptor Antagonist/inverse Agonist, Inhibits [3H]-Dopamine Uptake by Human Neuroblastoma SH-SY5Y Cells and Rat Brain Synaptosomes. Pharmacological Reports, 70, 146-155.
https://doi.org/10.1016/j.pharep.2017.08.007

[33]  Gershon, M.D. (2004) Review Article: Serotonin Receptors and Transporters—Roles in Normal and Abnormal Gastrointestinal Motility. Alimentary Pharmacology & Therapeutics, 20, 3-14.
https://doi.org/10.1111/j.1365-2036.2004.02180.x

[34]  Annaházi, A., Berger, T.E., Demir, I.E., Zeller, F., Müller, M., Anneser, M., et al. (2022) Metabotropic 5-HT Receptor-Mediated Effects in the Human Submucous Plexus. Neurogastroenterology & Motility, 34, e14380.
https://doi.org/10.1111/nmo.14380

[35]  Chedid, V., Brandler, J., Arndt, K., Vijayvargiya, P., Wang, X.J., Burton, D., et al. (2021) Randomised Study: Effects of the 5-HT4 Receptor Agonist Felcisetrag vs Placebo on Gut Transit in Patients with Gastroparesis. Alimentary Pharmacology & Therapeutics, 53, 1010-1020.
https://doi.org/10.1111/apt.16304

[36]  Whiting, R.L., Choppin, A., Luehr, G. and Jasper, J.R. (2021) Preclinical Evaluation of the Effects of Trazpiroben (TAK-906), a Novel, Potent Dopamine D2/D3 Receptor Antagonist for the Management of Gastroparesis. Journal of Pharmacology and Experimental Therapeutics, 379, 85-95.
https://doi.org/10.1124/jpet.121.000698

[37]  Pauwelyn, V., Ceelen, W. and Lefebvre, R.A. (2017) Synergy between 5-HT4 Receptor Stimulation and Phosphodiesterase 4 Inhibition in Facilitating Acetylcholine Release in Human Large Intestinal Circular Muscle. Neurogastroenterology & Motility, 30, e13162.
https://doi.org/10.1111/nmo.13162

[38]  Roy, D., Balasubramanian, S., Krishnamurthy, P.T., Sola, P. and Rymbai, E. (2023) Phosphodiesterase-4 Inhibition in Parkinson’s Disease: Molecular Insights and Therapeutic Potential. Cellular and Molecular Neurobiology, 43, 2713-2741.
https://doi.org/10.1007/s10571-023-01349-1

[39]  Méhats, C., Catherine Jin, S., Wahlstrom, J., Law, E., Umetsu, D.T. and Conti, M. (2003) PDE4D Plays a Critical Role in the Control of Airway Smooth Muscle Contraction. The FASEB Journal, 17, 1831-1841.
https://doi.org/10.1096/fj.03-0274com

[40]  Hosoi, R., Ishikawa, M., Kobayashi, K., Gee, A., Yamaguchi, M. and Inoue, O. (2003) Effect of Rolipram on Muscarinic Acetylcholine Receptor Binding in the Intact Mouse Brain. Journal of Neural Transmission, 110, 363-372.
https://doi.org/10.1007/s00702-002-0797-1

[41]  Travagli, R.A. and Anselmi, L. (2016) Vagal Neurocircuitry and Its Influence on Gastric Motility. Nature Reviews Gastroenterology & Hepatology, 13, 389-401.
https://doi.org/10.1038/nrgastro.2016.76

[42]  Bortolotti, M., Mari, C., Lopilato, C., La Rovere, L. and Miglioli, M. (2001) Sildenafil Inhibits Gastroduodenal Motility. Alimentary Pharmacology & Therapeutics, 15, 157-161.
https://doi.org/10.1046/j.1365-2036.2001.00917.x

[43]  Carbone, F. and Tack, J. (2018) The Effect of Sildenafil on Gastric Motility and Satiation in Healthy Controls. United European Gastroenterology Journal, 6, 846-854.
https://doi.org/10.1177/2050640618766933

[44]  Lee, S.E., Kim, D.H., Son, S.M., Choi, S., You, R.Y., Kim, C.H., et al. (2020) Physiological Function and Molecular Composition of ATP-Sensitive K+ Channels in Human Gastric Smooth Muscle. Journal of Smooth Muscle Research, 56, 29-45.
https://doi.org/10.1540/jsmr.56.29

[45]  Elmi, A., Idahl, L. and Sehlin, J. (2000) Relationships between the Na+/K+ Pump and ATP and ADP Content in Mouse Pancreatic Islets: Effects of Meglitinide and Glibenclamide. British Journal of Pharmacology, 131, 1700-1706.
https://doi.org/10.1038/sj.bjp.0703745

[46]  Sousa-Soares, C., Noronha-Matos, J.B. and Correia-de-Sá, P. (2023) Purinergic Tuning of the Tripartite Neuromuscular Synapse. Molecular Neurobiology, 60, 4084-4104.
https://doi.org/10.1007/s12035-023-03317-8

[47]  Hambrock, A., de Oliveira Franz, C.B., Hiller, S., Grenz, A., Ackermann, S., Schulze, D.U., et al. (2007) Resveratrol Binds to the Sulfonylurea Receptor (SUR) and Induces Apoptosis in a SUR Subtype-Specific Manner. Journal of Biological Chemistry, 282, 3347-3356.
https://doi.org/10.1074/jbc.m608216200

[48]  Bezerra, S.B., Leal, L.K.A.M., Nogueira, N.A.P. and Campos, A.R. (2009) Bisabolol-induced Gastroprotection against Acute Gastric Lesions: Role of Prostaglandins, Nitric Oxide, and K+ATP Channels. Journal of Medicinal Food, 12, 1403-1406.
https://doi.org/10.1089/jmf.2008.0290

[49]  Martin, G.M., Patton, B.L. and Shyng, S. (2023) KATP Channels in Focus: Progress toward a Structural Understanding of Ligand Regulation. Current Opinion in Structural Biology, 79, Article ID: 102541.
https://doi.org/10.1016/j.sbi.2023.102541

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133