全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Protective Effect of Selenium Supplementation on Cerebral Ischemia-Reperfusion Injury after Ischemic Stroke

DOI: 10.4236/jbm.2025.131015, PP. 184-195

Keywords: Selenium, Ischemic Stroke, Cerebral Ischemia-Reperfusion Injury, GPx4

Full-Text   Cite this paper   Add to My Lib

Abstract:

With the wide application of thrombolytic drugs and the advancement of endovascular therapeutic techniques, the recanalization treatment of acute artery occlusion in ischemic stroke (IS) has made a leap forward, but ischemic brain tissues still face ischemia-reperfusion injury after recanalization. Nowadays, effective neurological protective agents still cannot completely resist the multiple damages of ischemia-reperfusion injury. As an iron-dependent mode of programmed cell death, ferroptosis occupies an important position in ischemia-reperfusion injury. Selenium plays a unique protective role in ischemia-reperfusion injury as an active site element in the center of glutathione peroxidase. Therefore, the study mainly aims to review the protective role of selenium in IS and the related mechanisms, as well as the effect of selenium on the risk factors of IS.

References

[1]  Feigin, V.L., Stark, B.A., Johnson, C.O., Roth, G.A., Bisignano, C., Abady, G.G., et al. (2021) Global, Regional, and National Burden of Stroke and Its Risk Factors, 1990-2019: A Systematic Analysis for the Global Burden of Disease Study 2019. The Lancet Neurology, 20, 795-820.
https://doi.org/10.1016/s1474-4422(21)00252-0
[2]  Zhou, M., Wang, H., Zeng, X., Yin, P., Zhu, J., Chen, W., et al. (2019) Mortality, Morbidity, and Risk Factors in China and Its Provinces, 1990-2017: A Systematic Analysis for the Global Burden of Disease Study 2017. The Lancet, 394, 1145-1158.
https://doi.org/10.1016/s0140-6736(19)30427-1
[3]  Campbell, B.C.V., De Silva, D.A., Macleod, M.R., Coutts, S.B., Schwamm, L.H., Davis, S.M., et al. (2019) Ischaemic Stroke. Nature Reviews Disease Primers, 5, Article No. 70.
https://doi.org/10.1038/s41572-019-0118-8
[4]  Campbell, B.C.V. and Khatri, P. (2020) Stroke. The Lancet, 396, 129-142.
https://doi.org/10.1016/s0140-6736(20)31179-x
[5]  Tuo, Q., Zhang, S. and Lei, P. (2021) Mechanisms of Neuronal Cell Death in Ischemic Stroke and Their Therapeutic Implications. Medicinal Research Reviews, 42, 259-305.
https://doi.org/10.1002/med.21817
[6]  Xu, D., Kong, T., Shao, Z., Liu, M., Zhang, R., Zhang, S., et al. (2021) Orexin—A Alleviates Astrocytic Apoptosis and Inflammation via Inhibiting OX1R-Mediated NF-κB and MAPK Signaling Pathways in Cerebral Ischemia/Reperfusion Injury. Biochimica et Biophysica Acta (BBA)—Molecular Basis of Disease, 1867, Article ID: 166230.
https://doi.org/10.1016/j.bbadis.2021.166230
[7]  Zhang, L., Song, H., Guo, Y., Fan, B., Huang, Y., Mao, X., et al. (2020) Benefit-Risk Assessment of Dietary Selenium and Its Associated Metals Intake in China (2017-2019): Is Current Selenium-Rich Agro-Food Safe Enough? Journal of Hazardous Materials, 398, Article ID: 123224.
https://doi.org/10.1016/j.jhazmat.2020.123224
[8]  Zhao, B., Zhou, S., Wu, X., Xing, K., Zhu, Y., Hu, L., et al. (2018) Distribution and Accumulation of Selenium in Plants and Health Risk Assessment from a Selenium-Rich Area in China. Polish Journal of Environmental Studies, 27, 2873-2882.
https://doi.org/10.15244/pjoes/80693
[9]  Huang, X., Dong, Y., Li, T., Xiong, W., Zhang, X., Wang, P., et al. (2021) Dietary Selenium Regulates microRNAs in Metabolic Disease: Recent Progress. Nutrients, 13, Article 1527.
https://doi.org/10.3390/nu13051527
[10]  Avery, J. and Hoffmann, P. (2018) Selenium, Selenoproteins, and Immunity. Nutrients, 10, Article 1203.
https://doi.org/10.3390/nu10091203
[11]  Solovyev, N., Drobyshev, E., Bjørklund, G., Dubrovskii, Y., Lysiuk, R. and Rayman, M.P. (2018) Selenium, Selenoprotein P, and Alzheimer’s Disease: Is There a Link? Free Radical Biology and Medicine, 127, 124-133.
https://doi.org/10.1016/j.freeradbiomed.2018.02.030
[12]  Pyka, P., Garbo, S., Fioravanti, R., Jacob, C., Hittinger, M., Handzlik, J., et al. (2024) Selenium-Containing Compounds: A New Hope for Innovative Treatments in Alzheimer’s Disease and Parkinson’s Disease. Drug Discovery Today, 29, Article ID: 104062.
https://doi.org/10.1016/j.drudis.2024.104062
[13]  Ye, R., Huang, J., Wang, Z., Chen, Y. and Dong, Y. (2022) The Role and Mechanism of Essential Selenoproteins for Homeostasis. Antioxidants, 11, Article 973.
https://doi.org/10.3390/antiox11050973
[14]  Schweizer, U., Wirth, E.K., Klopstock, T., Hölter, S.M., Becker, L., Moskovitz, J., et al. (2022) Seizures, Ataxia and Parvalbumin-Expressing Interneurons Respond to Selenium Supply in Selenop-Deficient Mice. Redox Biology, 57, Article ID: 102490.
https://doi.org/10.1016/j.redox.2022.102490
[15]  Ouyang, P., Cai, Z., Peng, J., Lin, S., Chen, X., Chen, C., et al. (2024) Selenok-Dependent CD36 Palmitoylation Regulates Microglial Functions and Aβ Phagocytosis. Redox Biology, 70, Article ID: 103064.
https://doi.org/10.1016/j.redox.2024.103064
[16]  Weekley, C.M. and Harris, H.H. (2013) Which Form Is That? The Importance of Selenium Speciation and Metabolism in the Prevention and Treatment of Disease. Chemical Society Reviews, 42, 8870-8894.
https://doi.org/10.1039/c3cs60272a
[17]  Hossain, A., Skalicky, M., Brestic, M., Maitra, S., Sarkar, S., Ahmad, Z., et al. (2021) Selenium Biofortification: Roles, Mechanisms, Responses and Prospects. Molecules, 26, Article 881.
https://doi.org/10.3390/molecules26040881
[18]  Schomburg, L. (2022) Selenoprotein P—Selenium Transport Protein, Enzyme and Biomarker of Selenium Status. Free Radical Biology and Medicine, 191, 150-163.
https://doi.org/10.1016/j.freeradbiomed.2022.08.022
[19]  Labunskyy, V.M., Hatfield, D.L. and Gladyshev, V.N. (2014) Selenoproteins: Molecular Pathways and Physiological Roles. Physiological Reviews, 94, 739-777.
https://doi.org/10.1152/physrev.00039.2013
[20]  Yang, W.S. and Stockwell, B.R. (2016) Ferroptosis: Death by Lipid Peroxidation. Trends in Cell Biology, 26, 165-176.
https://doi.org/10.1016/j.tcb.2015.10.014
[21]  Peeler, J.C. and Weerapana, E. (2019) Chemical Biology Approaches to Interrogate the Selenoproteome. Accounts of Chemical Research, 52, 2832-2840.
https://doi.org/10.1021/acs.accounts.9b00379
[22]  Fradejas-Villar, N. (2018) Consequences of Mutations and Inborn Errors of Selenoprotein Biosynthesis and Functions. Free Radical Biology and Medicine, 127, 206-214.
https://doi.org/10.1016/j.freeradbiomed.2018.04.572
[23]  Santesmasses, D., Mariotti, M. and Gladyshev, V.N. (2020) Bioinformatics of Selenoproteins. Antioxidants & Redox Signaling, 33, 525-536.
https://doi.org/10.1089/ars.2020.8044
[24]  Handy, D.E. and Loscalzo, J. (2022) The Role of Glutathione Peroxidase-1 in Health and Disease. Free Radical Biology and Medicine, 188, 146-161.
https://doi.org/10.1016/j.freeradbiomed.2022.06.004
[25]  Brigelius-Flohé, R. and Flohé, L. (2020) Regulatory Phenomena in the Glutathione Peroxidase Superfamily. Antioxidants & Redox Signaling, 33, 498-516.
https://doi.org/10.1089/ars.2019.7905
[26]  Schweizer, U., Bohleber, S., Zhao, W. and Fradejas-Villar, N. (2021) The Neurobiology of Selenium: Looking Back and to the Future. Frontiers in Neuroscience, 15, Article 652099.
https://doi.org/10.3389/fnins.2021.652099
[27]  Pei, J., Pan, X., Wei, G. and Hua, Y. (2023) Research Progress of Glutathione Peroxidase Family (GPX) in Redoxidation. Frontiers in Pharmacology, 14, Article 1147414.
https://doi.org/10.3389/fphar.2023.1147414
[28]  Weaver, K. and Skouta, R. (2022) The Selenoprotein Glutathione Peroxidase 4: From Molecular Mechanisms to Novel Therapeutic Opportunities. Biomedicines, 10, Article 891.
https://doi.org/10.3390/biomedicines10040891
[29]  Jiang, X., Stockwell, B.R. and Conrad, M. (2021) Ferroptosis: Mechanisms, Biology and Role in Disease. Nature Reviews Molecular Cell Biology, 22, 266-282.
https://doi.org/10.1038/s41580-020-00324-8
[30]  Conrad, M. and Proneth, B. (2020) Selenium: Tracing Another Essential Element of Ferroptotic Cell Death. Cell Chemical Biology, 27, 409-419.
https://doi.org/10.1016/j.chembiol.2020.03.012
[31]  Liu, Y., Wan, Y., Jiang, Y., Zhang, L. and Cheng, W. (2023) GPX4: The Hub of Lipid Oxidation, Ferroptosis, Disease and Treatment. Biochimica et Biophysica Acta (BBA)—Reviews on Cancer, 1878, Article ID: 188890.
https://doi.org/10.1016/j.bbcan.2023.188890
[32]  Horn, T., Adel, S., Schumann, R., Sur, S., Kakularam, K.R., Polamarasetty, A., et al. (2015) Evolutionary Aspects of Lipoxygenases and Genetic Diversity of Human Leukotriene Signaling. Progress in Lipid Research, 57, 13-39.
https://doi.org/10.1016/j.plipres.2014.11.001
[33]  Ding, K., Liu, C., Li, L., Yang, M., Jiang, N., Luo, S., et al. (2023) Acyl-CoA Synthase ACSL4: An Essential Target in Ferroptosis and Fatty Acid Metabolism. Chinese Medical Journal, 136, 2521-2537.
https://doi.org/10.1097/cm9.0000000000002533
[34]  Ye, L.F. and Stockwell, B.R. (2017) Transforming Lipoxygenases: Pe-Specific Enzymes in Disguise. Cell, 171, 501-502.
https://doi.org/10.1016/j.cell.2017.10.006
[35]  Shah, R., Shchepinov, M.S. and Pratt, D.A. (2018) Resolving the Role of Lipoxygenases in the Initiation and Execution of Ferroptosis. ACS Central Science, 4, 387-396.
https://doi.org/10.1021/acscentsci.7b00589
[36]  Cui, Y., Zhang, Y., Zhao, X., Shao, L., Liu, G., Sun, C., et al. (2021) ACSL4 Exacerbates Ischemic Stroke by Promoting Ferroptosis-Induced Brain Injury and Neuroinflammation. Brain, Behavior, and Immunity, 93, 312-321.
https://doi.org/10.1016/j.bbi.2021.01.003
[37]  Gao, M., Yi, J., Zhu, J., Minikes, A.M., Monian, P., Thompson, C.B., et al. (2019) Role of Mitochondria in Ferroptosis. Molecular Cell, 73, 354-363.e3.
https://doi.org/10.1016/j.molcel.2018.10.042
[38]  Ingold, I., Berndt, C., Schmitt, S., Doll, S., Poschmann, G., Buday, K., et al. (2018) Selenium Utilization by GPX4 Is Required to Prevent Hydroperoxide-Induced Ferroptosis. Cell, 172, 409-422.e21.
https://doi.org/10.1016/j.cell.2017.11.048
[39]  Zhang, M., Liu, Q., Meng, H., Duan, H., Liu, X., Wu, J., et al. (2024) Ischemia-Reperfusion Injury: Molecular Mechanisms and Therapeutic Targets. Signal Transduction and Targeted Therapy, 9, Article No. 12.
https://doi.org/10.1038/s41392-023-01688-x
[40]  Feng, S., Yang, Q., Liu, M., Li, W., Yuan, W., Zhang, S., et al. (2011) Edaravone for Acute Ischaemic Stroke. Cochrane Database of Systematic Reviews, No. 12, CD007230.
https://doi.org/10.1002/14651858.cd007230.pub2
[41]  Wen, Y., Huang, S., Zhang, Y., Zhang, H., Zhou, L., Li, D., et al. (2019) Associations of Multiple Plasma Metals with the Risk of Ischemic Stroke: A Case-Control Study. Environment International, 125, 125-134.
https://doi.org/10.1016/j.envint.2018.12.037
[42]  Wang, Z., Hu, S., Song, Y., Liu, L., Huang, Z., Zhou, Z., et al. (2022) Association between Plasma Selenium and Risk of Ischemic Stroke: A Community-Based, Nested, and Case-Control Study. Frontiers in Nutrition, 9, Article 1001922.
https://doi.org/10.3389/fnut.2022.1001922
[43]  Zhao, K., Zhang, Y. and Sui, W. (2023) Association between Blood Selenium Levels and Stroke: A Study Based on the NHANES (2011-2018). Biological Trace Element Research, 202, 25-33.
https://doi.org/10.1007/s12011-023-03649-5
[44]  Shi, W., Su, L., Wang, J., Wang, F., Liu, X. and Dou, J. (2022) Correlation between Dietary Selenium Intake and Stroke in the National Health and Nutrition Examination Survey 2003-2018. Annals of Medicine, 54, 1395-1402.
https://doi.org/10.1080/07853890.2022.2058079
[45]  Zahia, T., Yona, L., Anne-Laure, B. and Laurent, C. (2014) Selective Up-Regulation of Human Selenoproteins in Response to Oxidative Stress. Free Radical Biology and Medicine, 75, S25.
https://doi.org/10.1016/j.freeradbiomed.2014.10.745
[46]  Varlamova, E.G., Turovsky, E.A. and Blinova, E.V. (2021) Therapeutic Potential and Main Methods of Obtaining Selenium Nanoparticles. International Journal of Molecular Sciences, 22, Article 10808.
https://doi.org/10.3390/ijms221910808
[47]  Shi, Y., Han, L., Zhang, X., Xie, L., Pan, P. and Chen, F. (2022) Selenium Alleviates Cerebral Ischemia/Reperfusion Injury by Regulating Oxidative Stress, Mitochondrial Fusion and Ferroptosis. Neurochemical Research, 47, 2992-3002.
https://doi.org/10.1007/s11064-022-03643-8
[48]  Yang, B., Li, Y., Ma, Y., Zhang, X., Yang, L., Shen, X., et al. (2021) Selenium Attenuates Ischemia/Reperfusion Injury-Induced Damage to the Bloodbrain Barrier in Hyperglycemia through PI3K/AKT/mTOR Pathway-Mediated Autophagy Inhibition. International Journal of Molecular Medicine, 48, Article No. 178.
https://doi.org/10.3892/ijmm.2021.5011
[49]  Zhu, M., Wang, G., Wang, H., Guo, Y., Song, P., Xu, J., et al. (2019) Amorphous Nano-Selenium Quantum Dots Improve Endothelial Dysfunction in Rats and Prevent Atherosclerosis in Mice through Na+/H+ Exchanger 1 Inhibition. Vascular Pharmacology, 115, 26-32.
https://doi.org/10.1016/j.vph.2019.01.005
[50]  Umar, M., Rehman, Y., Ambreen, S., Mumtaz, S.M., Shaququzzaman, M., Alam, M.M., et al. (2024) Innovative Approaches to Alzheimer’s Therapy: Harnessing the Power of Heterocycles, Oxidative Stress Management, and Nanomaterial Drug Delivery System. Ageing Research Reviews, 97, Article ID: 102298.
https://doi.org/10.1016/j.arr.2024.102298
[51]  Amani, H., Habibey, R., Shokri, F., Hajmiresmail, S.J., Akhavan, O., Mashaghi, A., et al. (2019) Selenium Nanoparticles for Targeted Stroke Therapy through Modulation of Inflammatory and Metabolic Signaling. Scientific Reports, 9, Article No. 6044.
https://doi.org/10.1038/s41598-019-42633-9
[52]  Varlamova, E.G., Khabatova, V.V., Gudkov, S.V., Plotnikov, E.Y. and Turovsky, E.A. (2022) Cytoprotective Properties of a New Nanocomplex of Selenium with Taxifolin in the Cells of the Cerebral Cortex Exposed to Ischemia/Reoxygenation. Pharmaceutics, 14, Article 2477.
https://doi.org/10.3390/pharmaceutics14112477
[53]  Lopes Junior, E., Leite, H.P. and Konstantyner, T. (2019) Selenium and Selenoproteins: From Endothelial Cytoprotection to Clinical Outcomes. Translational Research, 208, 85-104.
https://doi.org/10.1016/j.trsl.2019.01.004
[54]  Zhang, Y., Cartland, S.P., Henriquez, R., Patel, S., Gammelgaard, B., Flouda, K., et al. (2020) Selenomethionine Supplementation Reduces Lesion Burden, Improves Vessel Function and Modulates the Inflammatory Response within the Setting of Atherosclerosis. Redox Biology, 29, Article ID: 101409.
https://doi.org/10.1016/j.redox.2019.101409
[55]  Swart, R., Schutte, A.E., van Rooyen, J.M. and Mels, C.M.C. (2018) Selenium and Large Artery Structure and Function: A 10-Year Prospective Study. European Journal of Nutrition, 58, 3313-3323.
https://doi.org/10.1007/s00394-018-1875-y
[56]  Gać, P., Urbanik, D., Pawlas, N., Poręba, M., Martynowicz, H., Prokopowicz, A., et al. (2020) Total Antioxidant Status Reduction Conditioned by a Serum Selenium Concentration Decrease as a Mechanism of the Ultrasonographically Measured Brachial Artery Dilatation Impairment in Patients with Arterial Hypertension. Environmental Toxicology and Pharmacology, 75, Article ID: 103332.
https://doi.org/10.1016/j.etap.2020.103332
[57]  Zheng, Z., Liu, L., Zhou, K., Ding, L., Zeng, J. and Zhang, W. (2020) Anti-Oxidant and Anti-Endothelial Dysfunctional Properties of Nano-Selenium in Vitro and in Vivo of Hyperhomocysteinemic Rats. International Journal of Nanomedicine, 15, 4501-4521.
https://doi.org/10.2147/ijn.s255392
[58]  Zhang, Z., Wang, R., He, P., Dai, Y., Duan, S., Li, M., et al. (2023) Study on the Correlation and Interaction between Metals and Dyslipidemia: A Case-Control Study in Chinese Community-Dwelling Elderly. Environmental Science and Pollution Research, 30, 105756-105769.
https://doi.org/10.1007/s11356-023-29695-z
[59]  Kelishadi, M.R., Ashtary-Larky, D., Davoodi, S.H., Clark, C.C.T. and Asbaghi, O. (2022) The Effects of Selenium Supplementation on Blood Lipids and Blood Pressure in Adults: A Systematic Review and Dose-Response Meta-Analysis of Randomized Control Trials. Journal of Trace Elements in Medicine and Biology, 74, Article ID: 127046.
https://doi.org/10.1016/j.jtemb.2022.127046
[60]  Friedmann Angeli, J.P. and Conrad, M. (2018) Selenium and GPX4, a Vital Symbiosis. Free Radical Biology and Medicine, 127, 153-159.
https://doi.org/10.1016/j.freeradbiomed.2018.03.001

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133