Synthesis, Characterization, and Cell Viability Evaluation of Coordination Compounds with Rhodium(III) Ion and Nitrogen-Containing Heterocyclic Ligands
In the search for new drugs with more efficient active ingredients, various transition metals are being explored as potential metallopharmaceuticals. These compounds, which combine drugs with metals, have shown promise as chemotherapeutic agents, akin to the accidental discovery of cisplatin and its organic derivatives in the late 20th century. This discovery transformed the sciences, particularly in the fields of organic and inorganic chemistry, by offering new insights into the compositions and molecular geometries of inorganic complexes through coordination chemistry, while also intersecting with other scientific domains such as pharmacology and medicine. To contribute to the development of new chemotherapeutic compounds through simple and reproducible synthetic processes, this study utilized rhodium(III) chloride hydrate (RhCl3.nH2O) to synthesize a series of compounds with the following organic N-heterocyclic ligands: 4,4'-dimethyl-2,2'-bipyridine, isonicotinamide, and N-(3-pyridyl)-isonicotinamide (3-pina). Two analytical techniques were employed to characterize the resulting materials: spectroscopic analysis in the infrared region, which suggested interactions and substitutions at the metal center by the organic compounds, and thermoanalytical analyses, which led to the proposal of minimum formulas for the compounds as follows: C1 [RhCl2(4,4'-Met-2,2'-bipy)2]Cl?5/2H2O and C2 [Rh(4,4'-Met-2,2'-bipy)2(Iso)2] Cl3?1/2H2O. However, the complexation of the third compound could not be confirmed due to the physicochemical characteristics of the resulting complex being very similar to those of the starting material, thereby validating the effectiveness of these techniques in differentiating and characterizing the synthesized salts. Due to their solubility in water and/or alcohol and thermal stability, the complexes were tested in biological media to assess cell viability in peripheral blood mononuclear cells. The solutions of these salts demonstrated favorable cell viability under the tested conditions, according to statistical analysis, obtaining average viability in the range of 95 ≤ x ≤ 100, with standard deviations between 3.29 ≤ x ≤ 4.44 for living cells.
References
[1]
Bray, F., Laversanne, M., Sung, H., Ferlay, J., Siegel, R.L., Soerjomataram, I., et al. (2024) Global Cancer Statistics 2022: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA: A Cancer Journal for Clinicians, 74, 229-263. https://doi.org/10.3322/caac.21834
[2]
Soerjomataram, I. and Bray, F. (2021) Planning for Tomorrow: Global Cancer Incidence and the Role of Prevention 2020-2070. Nature Reviews Clinical Oncology, 18, 663-672. https://doi.org/10.1038/s41571-021-00514-z
[3]
Chatelier, E., Mahieu, R., Hamel, J., Chenouard, R., Lozac’h, P., Sallé, A., et al. (2020) Pasteurella Bacteraemia: Impact of Comorbidities on Outcome, Based on a Case Series and Literature Review. International Journal of Infectious Diseases, 92, 89-96. https://doi.org/10.1016/j.ijid.2020.01.003
[4]
Lai, F.T.T., Liu, W., Hu, Y., Wei, C., Chu, R.Y.K., Lum, D.H., et al. (2023) Elevated Risk of Multimorbidity Post-Covid-19 Infection: Protective Effect of Vaccination. QJM: An International Journal of Medicine, 117, 125-132. https://doi.org/10.1093/qjmed/hcad236
[5]
Ministério da Saúde do Governo Federal Brasil (2022) Instituto de Câncer, Estimativa 2023: Incidência de câncer no Brasil/Instituto Nacional de Câncer. https://ninho.inca.gov.br/jspui/bitstream/123456789/13748/1/Estimativa%202023%20-%20incid%c3%aancia%20de%20c%c3%a2ncer%20no%20Brasil.pdf
[6]
Plummer, M., de Martel, C., Vignat, J., Ferlay, J., Bray, F. and Franceschi, S. (2016) Global Burden of Cancers Attributable to Infections in 2012: A Synthetic Analysis. The Lancet Global Health, 4, e609-e616. https://doi.org/10.1016/s2214-109x(16)30143-7
[7]
Aguilar, G.R., Swetschinski, L.R., Weaver, N.D., Ikuta, K.S., Mestrovic, T., Gray, A.P., et al. (2023) The Burden of Antimicrobial Resistance in the Americas in 2019: A Cross-Country Systematic Analysis. The Lancet Regional Health—Americas, 25, Article ID: 100561. https://doi.org/10.1016/j.lana.2023.100561
[8]
Beraldo, H. (2011) Tendências atuais e as perspectivas futuras da química inorgânica. Ciência e Cultura, 63, 29-32. https://doi.org/10.21800/s0009-67252011000100012
[9]
Rosenberg, B., Vancamp, L., Trosko, J.E. and Mansour, V.H. (1969) Platinum Compounds: A New Class of Potent Antitumour Agents. Nature, 222, 385-386. https://doi.org/10.1038/222385a0
[10]
Weller, M., Tina, O., Rourke, J. and Armstrong, F. (2017) Química Inorgânica. 6th Edition, Bookman.
[11]
Souza, M.V.N.D. and Vasconcelos, T.R.A. (2005) Fármacos no combate à tuberculose: passado, presente e futuro. Química Nova, 28, 678-682. https://doi.org/10.1590/s0100-40422005000400022
[12]
de Lima, L., Santos, M., Albuquerque, L., Belian, M., Silva, W., Filho, J., et al. (2020) Complexos de platina(II) conjugado e análogo a o-glicosídeos: Síntese, caracterização estrutural e atividade antitumoral. Química Nova, 43, 752-759. https://doi.org/10.21577/0100-4042.20170546
[13]
Guerra, W., Alves, F.E. and Silva, P.P. (2010) Metais do Grupo da Platina: História, Propriedades e Aplicações. Boletim da Sociedade Portuguesa de Química, 27-33. https://doi.org/10.52590/m3.p649.a30001594
[14]
Neves, A.P. and Vargas, M.D. (2011) Platinum(II) Complexes in Cancer Therapy. Revista Virtual de Química, 3, 196-209. https://doi.org/10.5935/1984-6835.20110023
[15]
dos Santos, E.R. (2011) Síntese e caracterização de complexos de fórmula geral [Ru(AA)(P-P)(N-N)]PF6, onde (AA = aminoácidos; P-P = bifosfinas; N-N = 2, 2’-bipiridina e derivados e 1, 10-fenantrolina): Avaliação de suas potencialidades citotóxicas. https://repositorio.ufscar.br/handle/ufscar/6213
[16]
Lima, A.P., Pereira, F.C., Almeida, M.A.P., Mello, F.M.S., Pires, W.C., Pinto, T.M., et al. (2014) Cytoxicity and Apoptotic Mechanism of Ruthenium(II) Amino Acid Complexes in Sarcoma-180 Tumor Cells. PLOS ONE, 9, e105865. https://doi.org/10.1371/journal.pone.0105865
[17]
Katsaros, N. and Anagnostopoulou, A. (2002) Rhodium and Its Compounds as Potential Agents in Cancer Treatment. Critical Reviews in Oncology/Hematology, 42, 297-308. https://doi.org/10.1016/s1040-8428(01)00222-0
[18]
Prathima, T.S., Choudhury, B., Ahmad, M.G., Chanda, K. and Balamurali, M.M. (2023) Recent Developments on Other Platinum Metal Complexes as Target-Specific Anticancer Therapeutics. Coordination Chemistry Reviews, 490, Article ID: 215231. https://doi.org/10.1016/j.ccr.2023.215231
[19]
Alessio, E. (2016) Thirty Years of the Drug Candidate NAMI‐A and the Myths in the Field of Ruthenium Anticancer Compounds: A Personal Perspective. European Journal of Inorganic Chemistry, 2017, 1549-1560. https://doi.org/10.1002/ejic.201600986
[20]
Chaves, J.D.S., Tunes, L.G., de J. Franco, C.H., Francisco, T.M., Corrêa, C.C., Murta, S.M.F., et al. (2017) Novel Gold(I) Complexes with 5-Phenyl-1,3,4-Oxadiazole-2-Thione and Phosphine as Potential Anticancer and Antileishmanial Agents. European Journal of Medicinal Chemistry, 127, 727-739. https://doi.org/10.1016/j.ejmech.2016.10.052
[21]
de Paiva, R.E.F., Marçal Neto, A., Santos, I.A., Jardim, A.C.G., Corbi, P.P. and Bergamini, F.R.G. (2020) What Is Holding Back the Development of Antiviral Metallodrugs? A Literature Overview and Implications for SARS-CoV-2 Therapeutics and Future Viral Outbreaks. Dalton Transactions, 49, 16004-16033. https://doi.org/10.1039/d0dt02478c
[22]
Yu, W., Ping Cheng, L., Pang, W. and Ling Guo, L. (2022) Design, Synthesis and Biological Evaluation of Novel 1, 3, 4-Oxadiazole Derivatives as Potent Neuraminidase Inhibitors. Bioorganic & Medicinal Chemistry, 57, Article ID: 116647. https://doi.org/10.1016/j.bmc.2022.116647
[23]
Rocha, D.P., Pinto, G.F., Ruggiero, R., Oliveira, C.A.d., Guerra, W., Fontes, A.P.S., et al. (2011) Coordenação de metais a antibióticos como uma estratégia de combate à resistência bacteriana. Química Nova, 34, 111-118. https://doi.org/10.1590/s0100-40422011000100022
[24]
Tulchinsky, Y., Kozuch, S., Saha, P., Mauda, A., Nisnevich, G., Botoshansky, M., et al. (2015) Coordination Chemistry of N‐heterocyclic Nitrenium-Based Ligands. Chemistry—A European Journal, 21, 7099-7110. https://doi.org/10.1002/chem.201405526
[25]
Holmes, J., Pask, C.M. and Willans, C.E. (2016) Chelating N-Heterocyclic Carbene-Carboranes Offer Flexible Ligand Coordination to IrIII, RhIII and RuII: Effect of Ligand Cyclometallation in Catalytic Transfer Hydrogenation. Dalton Transactions, 45, 15818-15827. https://doi.org/10.1039/c6dt02079h
[26]
Gardner, T.S., Wenis, E. and Lee, J. (1954) The Synthesis of Compounds for the Chemotherapy of Tuberculosis. IV. the Amide Function. The Journal of Organic Chemistry, 19, 753-757. https://doi.org/10.1021/jo01370a009
[27]
da Encarnação Amorim, K.A. (2020) Sintese, Caracterização e Avaliação Biológica Para Os Compostos De Coordenação De Rutênio(II) E Rutênio(III) Utilizando o Ligante N-(3-Piridil)-Isonicotinamida. Ph.D. Thesis, Universidade Federal de Mato Grosso.
[28]
Gerisch, M., Krumper, J.R., Bergman, R.G. and Tilley, T.D. (2002) Rhodium(III) and Rhodium(II) Complexes of Novel Bis(Oxazoline) Pincer Ligands. Organometallics, 22, 47-58. https://doi.org/10.1021/om0207562
[29]
dos Santos, W.B., Amorim, K.A.E., Galvão, A.D., Moraes, F.T., Fortaleza, D.B. and Pavanin, L.A. (2019) Photochemical Properties of trans-[Ru(NH3)4(bpa)(L)]2+ (L = py, isn, 4-acpy or 4-pic). Photochemistry and Photobiology, 95, 1306-1310. https://doi.org/10.1111/php.13133
[30]
França, E.L., Honorio-França, A.C., Fernandes, R.T.D.S., Marins, C.M.F., Pereira, C.C.D.S. and Varotti, F.D.P. (2015) The Effect of Melatonin Adsorbed to Polyethylene Glycol Microspheres on the Survival of MCF-7 Cells. Neuroimmunomodulation, 23, 27-32. https://doi.org/10.1159/000439277
[31]
Tarso, M.F., Dourado, G.A., Batista, F.D., Encarnação, A.K.A.D., Cristina, S.C., Cristina, H.A., et al. (2020) Synthesis, Characterization, and Evaluation of Antitumor Potential in MCF-7 Cells of Ruthenium-Derived Compounds. Advances in Biological Chemistry, 10, 86-98. https://doi.org/10.4236/abc.2020.103007
[32]
Galvão, A.D., Moraes, F.T.D., Sousa, C.C.D., Sousa, K.M.D.D., Marchi, P.G.F.D., França, A.C.H., et al. (2019) Synthesis and Characterization of a New Compound of Cobalt II with Isonicotinamide and Evaluation of the Bactericidal Potential. Open Journal of Inorganic Chemistry, 9, 11-22. https://doi.org/10.4236/ojic.2019.92002
[33]
Fornaciari, B., Juvenal, M.S., Martins, W.K., Junqueira, H.C. and Baptista, M.S. (2023) Photodynamic Activity of Acridine Orange in Keratinocytes under Blue Light Irradiation. Photochem, 3, 209-226. https://doi.org/10.3390/photochem3020014
[34]
Vray, B., Hoebeke, J., Saint‐Guillain, M., Leloup, R. and Strosberg, A.D. (1980) A New Quantitative Fluorimetric Assay for Phagocytosis of Bacteria. Scandinavian Journal of Immunology, 11, 147-153. https://doi.org/10.1111/j.1365-3083.1980.tb00220.x
[35]
Fernandes, N.S., Carvalho Filho, M.A.D.S., Mendes, R.A. and Ionashiro, M. (1999) Thermal Decomposition of Some Chemotherapic Substances. Journal of the Brazilian Chemical Society, 10, 459-462. https://doi.org/10.1590/s0103-50531999000600007
[36]
Fernandes, R.P., do Nascimento, A.L.C.S., Carvalho, A.C.S., Teixeira, J.A., Ionashiro, M. and Caires, F.J. (2019) Mechanochemical Synthesis, Characterization, and Thermal Behavior of Meloxicam Cocrystals with Salicylic Acid, Fumaric Acid, and Malic Acid. Journal of Thermal Analysis and Calorimetry, 138, 765-777. https://doi.org/10.1007/s10973-019-08118-7
[37]
Pavia, D.L., Lampman, G.M., Kriz, G.S. and Vyvyan, J.R. (2010) Tradução da 4 a edição norte-americana. https://www.academia.edu/39590627/Tradu%C3%A7%C3%A3o_da_4_a_edi%C3%A7%C3%A3o_norte_americana
[38]
Silverstein, R.M., Webster, F.X. and Kiemle, D.J. (2010) Identificação Espectrométrica de Compostos Orgânicos. LTC.
[39]
Fo’ad, T., Hameed, G.S. and Raauf, A.M.R. (2022) Thermal Analysis in the Pre-Formulation of Amorphous Solid Dispersion for Poorly Water-Soluble Drugs. International Journal of Drug Delivery Technology, 12, 1595-1599. https://doi.org/10.25258/ijddt.12.4.19
[40]
Ferreira da Cruz, T., Rodrigues de Andrade, G., Rodrigues da Silva, G., Suniga Tozatti, C.S. and Vizolli Favarin, L.R. (2020) Síntese e caracterização de complexos de cobalto(II) com ligantes orgânicos e avaliação antimicrobiana. UNESUM-Ciencias. RevistaCientíficaMultidisciplinaria, 3, 177-190. https://doi.org/10.47230/unesum-ciencias.v3.n1.2019.137
[41]
Wesolowski, M. and Leyk, E. (2023) Coupled and Simultaneous Thermal Analysis Techniques in the Study of Pharmaceuticals. Pharmaceutics, 15, Article 1596. https://doi.org/10.3390/pharmaceutics15061596
[42]
Aziz, M.A., Krisnadi, S.R., Handono, B. and Setiabudiawan, B. (2023) Pregnant Human Myometrial 1-41 Cell Viability Test on Vitamin D Administration. Althea Medical Journal, 10, 131-135. https://doi.org/10.15850/amj.v10n3.2750