全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Observer-Dependence in P vs NP

DOI: 10.4236/jmp.2025.161002, PP. 6-51

Keywords: Complexity, Computation, Observer Theory, Gravitation, Information, Criticality

Full-Text   Cite this paper   Add to My Lib

Abstract:

We present a new perspective on the P vs NP problem by demonstrating that its answer is inherently observer-dependent in curved spacetime, revealing an oversight in the classical formulation of computational complexity theory. By incorporating general relativistic effects into complexity theory through a gravitational correction factor, we prove that problems can transition between complexity classes depending on the observer’s reference frame and local gravitational environment. This insight emerges from recognizing that the definition of polynomial time implicitly assumes a universal time metric, an assumption that breaks down in curved spacetime due to gravitational time dilation. We demonstrate the existence of gravitational phase transitions in problem complexity, where an NP-complete problem in one reference frame becomes polynomially solvable in another frame experiencing extreme gravitational time dilation. Through rigorous mathematical formulation, we establish a gravitationally modified complexity theory that extends classical complexity classes to incorporate observer-dependent effects, leading to a complete framework for understanding how computational complexity transforms across different spacetime reference frames. This finding parallels other self-referential insights in mathematics and physics, such as G?del’s incompleteness theorems and Einstein’s relativity, suggesting a deeper connection between computation, gravitation, and the nature of mathematical truth.

References

[1]  Cook, S.A. (1971) The Complexity of Theorem-Proving Procedures. Proceedings of the 3rd Annual ACM Symposium on Theory of Computing, Shaker Heights, 3-5 May 1971, 151-158.
https://doi.org/10.1145/800157.805047
[2]  Einstein, A. (1915) Die Feldgleichungen der Gravitation. Sitzungsberichte der Preus-sischen Akademie der Wissenschaften, 844-847.
[3]  Arora, S. and Barak, B. (2009) Computational Complexity: A Modern Approach. Cambridge University Press.
https://doi.org/10.1017/cbo9780511804090
[4]  Misner, C.W., Thorne, K.S. and Wheeler, J.A. (1973) Gravitation. W.H. Freeman.
[5]  Landauer, R. (1961) Irreversibility and Heat Generation in the Computing Process. IBM Journal of Research and Development, 5, 183-191.
https://doi.org/10.1147/rd.53.0183
[6]  Einstein, A. (1905) Zur Elektrodynamik bewegter Körper. Annalen der Physik, 322, 891-921.
https://doi.org/10.1002/andp.19053221004
[7]  von Neumann, J. (1955) Mathematical Foundations of Quantum Mechanics. Prince-ton University Press.
[8]  Rovelli, C. (2004) Quantum Gravity. Cambridge University Press.
https://doi.org/10.1017/cbo9780511755804
[9]  Pound, R.V. and Rebka, G.A. (1960) Apparent Weight of Photons. Physical Review Letters, 4, 337-341.
https://doi.org/10.1103/physrevlett.4.337
[10]  Németi, I. and Dávid, G. (2006) Relativistic Computers and the Turing Barrier. Applied Mathematics and Computation, 178, 118-142.
https://doi.org/10.1016/j.amc.2005.09.075
[11]  Thiemann, T. (2007) Modern Canonical Quantum General Relativity. Cambridge University Press.
https://doi.org/10.1017/cbo9780511755682
[12]  Lloyd, S. (2000) Ultimate Physical Limits to Computation. Nature, 406, 1047-1054.
https://doi.org/10.1038/35023282
[13]  Nielsen, M.A. and Chuang, I.L. (2006) Quantum Computation and Quantum Information. Cambridge University Press.
[14]  Aaronson, S. (2005) Guest Column: Np-Complete Problems and Physical Reality. ACM SIGACT News, 36, 30-52.
https://doi.org/10.1145/1052796.1052804
[15]  Watrous, J. (2009) Quantum Computational Complexity. In: Encyclopedia of Complexity and Systems Science, Springer, 7174-7201.
https://doi.org/10.1007/978-0-387-30440-3_428
[16]  Rovelli, C. (2019) The Order of Time. Riverhead Books.
[17]  Benioff, P. (1980) The Computer as a Physical System: A Microscopic Quantum Mechanical Hamiltonian Model of Computers as Represented by Turing Machines. Journal of Statistical Physics, 22, 563-591.
https://doi.org/10.1007/bf01011339
[18]  Susskind, L. (2008) The Black Hole War: My Battle with Stephen Hawking to Make the World Safe for Quantum Mechanics. Little, Brown and Company.
[19]  Papadimitriou, C.H. (1994) Computational Complexity. Addison-Wesley.
[20]  Bernstein, E. and Vazirani, U. (1997) Quantum Complexity Theory. SIAM Journal on Computing, 26, 1411-1473.
https://doi.org/10.1137/s0097539796300921
[21]  Goldreich, O. (2008) Computational Complexity: A Conceptual Perspective. Cambridge University Press.
https://doi.org/10.1017/cbo9780511804106
[22]  ‘t Hooft, G. (1993) Dimensional Reduction in Quantum Gravity.
[23]  Penrose, R. (1971) Angular Momentum: An Approach to Combinatorial Space-Time. In: Bastin, T., Ed., Quantum Theory and Beyond, Cambridge University Press, 151-180.
[24]  Bekenstein, J.D. (1981) Universal Upper Bound on the Entropy-to-Energy Ratio for Bounded Systems. Physical Review D, 23, 287-298.
https://doi.org/10.1103/physrevd.23.287
[25]  Hawking, S.W. (1975) Particle Creation by Black Holes. Communications in Mathematical Physics, 43, 199-220.
https://doi.org/10.1007/bf02345020
[26]  Wald, R.M. (1984) General Relativity. University of Chicago Press.
https://doi.org/10.7208/chicago/9780226870373.001.0001
[27]  Vessot, R.F.C. and Levine, M.W. (1979) A Test of the Equivalence Principle Using a Space-Borne Clock. General Relativity and Gravitation, 10, 181-204.
https://doi.org/10.1007/bf00759854
[28]  Hafele, J.C. and Keating, R.E. (1972) Around-the-World Atomic Clocks: Predicted Relativistic Time Gains. Science, 177, 166-168.
https://doi.org/10.1126/science.177.4044.166
[29]  Wheeler, J.A. (1957) On the Nature of Quantum Geometrodynamics. Annals of Physics, 2, 604-614.
https://doi.org/10.1016/0003-4916(57)90050-7
[30]  Bousso, R. (2002) The Holographic Principle. Reviews of Modern Physics, 74, 825-874.
https://doi.org/10.1103/revmodphys.74.825
[31]  Einstein, A. (1916) The Foundation of the General Theory of Relativity. Annalen der Physik, 354, 769-822.
https://doi.org/10.1002/andp.19163540702
[32]  Witten, E. (2018) Mini-Introduction to Information Theory.
[33]  Sipser, M. (2006) Introduction to the Theory of Computation. Thomson Course Technology.
[34]  Hawking, S.W. and Ellis, G.F.R. (1973) The Large Scale Structure of Space-Time. Cambridge University Press.
https://doi.org/10.1017/cbo9780511524646
[35]  Kobayashi, S. and Nomizu, K. (1963) Foundations of Differential Geometry. Inter-science Publishers.
[36]  Warner, F.W. (1983) Foundations of Differentiable Manifolds and Lie Groups. Springer-Verlag.
[37]  Varadarajan, V.S. (1984) Lie Groups, Lie Algebras, and Their Representations. Springer-Verlag.
[38]  Isham, C.J. (1999) Modern Differential Geometry for Physicists. World Scientific.
https://doi.org/10.1142/3867
[39]  Goldenfeld, N. (1992) Lectures on Phase Transitions and the Renormalization Group. Addison-Wesley.
[40]  Binney, J.J., Dowrick, N.J., Fisher, A.J. and Newman, M.E.J. (1992) The Theory of Critical Phenomena: An Introduction to the Renormalization Group. Oxford University Press.
[41]  Arnold, V.I. (1992) Catastrophe Theory. 3rd Edition, Springer-Verlag.
[42]  Wilson, K. (1974) The Renormalization Group and the Ε Expansion. Physics Reports, 12, 75-199.
https://doi.org/10.1016/0370-1573(74)90023-4
[43]  Hawking, S.W. (1992) Chronology Protection Conjecture. Physical Review D, 46, 603-611.
https://doi.org/10.1103/physrevd.46.603
[44]  Thorne, K.S. (1994) Black Holes and Time Warps: Einstein’s Outrageous Legacy. W.W. Norton.
[45]  Geroch, R. (1970) Domain of Dependence. Journal of Mathematical Physics, 11, 437-449.
https://doi.org/10.1063/1.1665157
[46]  Friedman, J., Morris, M.S., Novikov, I.D., Echeverria, F., Klinkhammer, G., Thorne, K.S., et al. (1990) Cauchy Problem in Spacetimes with Closed Timelike Curves. Physical Review D, 42, 1915-1930.
https://doi.org/10.1103/physrevd.42.1915
[47]  Kerr, R.P. (1963) Gravitational Field of a Spinning Mass as an Example of Algebraically Special Metrics. Physical Review Letters, 11, 237-238.
https://doi.org/10.1103/physrevlett.11.237
[48]  Chandrasekhar, S. (1983) The Mathematical Theory of Black Holes. Oxford University Press.
[49]  Penrose, R. (1965) Gravitational Collapse and Space-Time Singularities. Physical Review Letters, 14, 57-59.
https://doi.org/10.1103/physrevlett.14.57
[50]  Shapiro, I.I. (1964) Fourth Test of General Relativity. Physical Review Letters, 13, 789-791.
https://doi.org/10.1103/physrevlett.13.789
[51]  Bardeen, J.M., Carter, B. and Hawking, S.W. (1973) The Four Laws of Black Hole Mechanics. Communications in Mathematical Physics, 31, 161-170.
https://doi.org/10.1007/bf01645742
[52]  Nakahara, M. (2003) Geometry, Topology and Physics. 2nd Edition, Institute of Physics Publishing.
[53]  Kadanoff, L.P. (1966) Scaling Laws for Ising Models near TC. Physics Physique Fizika, 2, 263-272.
https://doi.org/10.1103/physicsphysiquefizika.2.263
[54]  Penrose, R. and Rindler, W. (1986) Spinors and Space-Time: Two-Spinor Calculus and Relativistic Fields. Cambridge University Press.
[55]  Susskind, L. (1995) The World as a Hologram. Journal of Mathematical Physics, 36, 6377-6396.
https://doi.org/10.1063/1.531249
[56]  Birkhoff, G. (1940) Lattice Theory. American Mathematical Society.
https://doi.org/10.1090/coll/025
[57]  Grätzer, G. (2002) General Lattice Theory. 2nd Edition, Birkhäuser.
[58]  Bennett, C.H. (1982) The Thermodynamics of Computation—A Review. International Journal of Theoretical Physics, 21, 905-940.
https://doi.org/10.1007/bf02084158
[59]  Feynman, R.P. (1948) Space-Time Approach to Non-Relativistic Quantum Mechanics. Reviews of Modern Physics, 20, 367-387.
https://doi.org/10.1103/revmodphys.20.367
[60]  Atiyah, M.F. (1978) Geometry of Yang-Mills Fields. Scuola Normale Superiore.
[61]  Feynman, R.P. (1982) Simulating Physics with Computers. International Journal of Theoretical Physics, 21, 467-488.
https://doi.org/10.1007/bf02650179
[62]  Greenberger, D.M., Horne, M.A., Shimony, A. and Zeilinger, A. (1990) Bell’s Theorem without Inequalities. American Journal of Physics, 58, 1131-1143.
https://doi.org/10.1119/1.16243
[63]  Aspect, A., Grangier, P. and Roger, G. (1982) Experimental Realization of Einstein-Podolsky-Rosen-Bohm. Gedankenexperiment: A New Violation of Bell’s Inequalities. Physical Review Letters, 49, 91-94.
https://doi.org/10.1103/physrevlett.49.91
[64]  Haroche, S. (2013) Nobel Lecture: Controlling Photons in a Box and Exploring the Quantum to Classical Boundary. Reviews of Modern Physics, 85, 1083-1102.
https://doi.org/10.1103/revmodphys.85.1083
[65]  Popper, K. (1959) The Logic of Scientific Discovery. Routledge.
[66]  Taylor, J.R. (1997) An Introduction to Error Analysis: The Study of Uncertainties in Physical Measurements. University Science Books.
[67]  Lyons, L. (2008) Statistics for Physics Analysis. Annual Review of Nuclear and Particle Science, 58, 351-378.
[68]  Chou, C.W., Hume, D.B., Rosenband, T. and Wineland, D.J. (2010) Optical Clocks and Relativity. Science, 329, 1630-1633.
https://doi.org/10.1126/science.1192720
[69]  Takano, T., Takamoto, M., Ushijima, I., Ohmae, N., Akatsuka, T., Yamaguchi, A., et al. (2016) Geopotential Measurements with Synchronously Linked Optical Lattice Clocks. Nature Photonics, 10, 662-666.
https://doi.org/10.1038/nphoton.2016.159
[70]  Ludlow, A.D., Boyd, M.M., Ye, J., Peik, E. and Schmidt, P.O. (2015) Optical Atomic Clocks. Reviews of Modern Physics, 87, 637-701.
https://doi.org/10.1103/revmodphys.87.637
[71]  McGrew, W.F., Zhang, X., Fasano, R.J., Schäffer, S.A., Beloy, K., Nicolodi, D., et al. (2018) Atomic Clock Performance Enabling Geodesy Below the Centimetre Level. Nature, 564, 87-90.
https://doi.org/10.1038/s41586-018-0738-2
[72]  Amelino-Camelia, G. (2013) Quantum-Spacetime Phenomenology. Living Reviews in Relativity, 16, Article No. 5.
https://doi.org/10.12942/lrr-2013-5
[73]  Hinkley, N., Sherman, J.A., Phillips, N.B., Schioppo, M., Lemke, N.D., Beloy, K., et al. (2013) An Atomic Clock with 10–18 Instability. Science, 341, 1215-1218.
https://doi.org/10.1126/science.1240420
[74]  Takamoto, M., Ushijima, I., Ohmae, N., Yahagi, T., Kokado, K., Shinkai, H., et al. (2020) Test of General Relativity by a Pair of Transportable Optical Lattice Clocks. Nature Photonics, 14, 411-415.
https://doi.org/10.1038/s41566-020-0619-8
[75]  Nicholson, T.L., Campbell, S.L., Hutson, R.B., Marti, G.E., Bloom, B.J., McNally, R.L., et al. (2015) Systematic Evaluation of an Atomic Clock at 2 × 10−18 Total Uncertainty. Nature Communications, 6, Article No. 6896.
https://doi.org/10.1038/ncomms7896
[76]  Bevington, P.R. and Robinson, D.K. (2003) Data Reduction and Error Analysis for the Physical Sciences. McGraw-Hill.
[77]  Ashby, N. (2003) Relativity in the Global Positioning System. Living Reviews in Relativity, 6, Article No. 1.
https://doi.org/10.12942/lrr-2003-1
[78]  Everitt, C.W.F., DeBra, D.B., Parkinson, B.W., Turneaure, J.P., Conklin, J.W., Heifetz, M.I., et al. (2011) Gravity Probe B: Final Results of a Space Experiment to Test General Relativity. Physical Review Letters, 106, Article ID: 221101.
https://doi.org/10.1103/physrevlett.106.221101
[79]  Will, C.M. (2014) The Confrontation between General Relativity and Experiment. Living Reviews in Relativity, 17, Article No. 4.
https://doi.org/10.12942/lrr-2014-4
[80]  Predehl, K., Grosche, G., Raupach, S.M.F., Droste, S., Terra, O., Alnis, J., et al. (2012) A 920-Kilometer Optical Fiber Link for Frequency Metrology at the 19th Decimal Place. Science, 336, 441-444.
https://doi.org/10.1126/science.1218442
[81]  Touboul, P., Métris, G., Rodrigues, M., André, Y., Baghi, Q., Bergé, J., et al. (2017) Microscope Mission: First Results of a Space Test of the Equivalence Principle. Physical Review Letters, 119, Article ID: 231101.
https://doi.org/10.1103/physrevlett.119.231101
[82]  Peters, A., Chung, K.Y. and Chu, S. (1999) Measurement of Gravitational Acceleration by Dropping Atoms. Nature, 400, 849-852.
https://doi.org/10.1038/23655
[83]  Mohr, P.J., Newell, D.B. and Taylor, B.N. (2016) CODATA Recommended Values of the Fundamental Physical Constants: 2014. Reviews of Modern Physics, 88, Article ID: 035009.
https://doi.org/10.1103/revmodphys.88.035009
[84]  Zurek, W.H. (2003) Decoherence, Einselection, and the Quantum Origins of the Classical. Reviews of Modern Physics, 75, 715-775.
https://doi.org/10.1103/revmodphys.75.715
[85]  Cowan, G. (2011) Discovery Sensitivity for Future Measurements. European Physical Journal C, 71, 1.
[86]  Vallone, G., Bacco, D., Dequal, D., Gaiarin, S., Luceri, V., Bianco, G., et al. (2015) Experimental Satellite Quantum Communications. Physical Review Letters, 115, Article ID: 040502.
https://doi.org/10.1103/physrevlett.115.040502
[87]  Yin, J., Cao, Y., Li, Y., Liao, S., Zhang, L., Ren, J., et al. (2017) Satellite-Based Entanglement Distribution over 1200 Kilometers. Science, 356, 1140-1144.
https://doi.org/10.1126/science.aan3211
[88]  Schiller, S., Tino, G.M., Gill, P., Salomon, C., Sterr, U., Peik, E., et al. (2008) Einstein Gravity Explorer—A Medium-Class Fundamental Physics Mission. Experimental Astronomy, 23, 573-610.
https://doi.org/10.1007/s10686-008-9126-5
[89]  Herrmann, S., Finke, F., Lülf, M., Kichakova, O., Puetzfeld, D., Knickmann, D., et al. (2018) Test of the Gravitational Redshift with Galileo Satellites in an Eccentric Orbit. Physical Review Letters, 121, Article ID: 231102.
https://doi.org/10.1103/physrevlett.121.231102
[90]  Bruschi, D.E., Ralph, T.C., Fuentes, I., Jennewein, T. and Razavi, M. (2014) Spacetime Effects on Satellite-Based Quantum Communications. Physical Review D, 90, Article ID: 045041.
https://doi.org/10.1103/physrevd.90.045041
[91]  Steinlechner, F., Trojek, P., Jofre, M., Weier, H., Perez, D., Jennewein, T. and Weinfurter, H. (2017) A High-Brightness Source of Polarization-Entangled Photons Optimized for Applications in Free Space. Optics Express, 25, 6851-6862.
[92]  Yin, J., Li, Y., Liao, S., Yang, M., Cao, Y., Zhang, L., et al. (2020) Entanglement-Based Secure Quantum Cryptography over 1,120 Kilometres. Nature, 582, 501-505.
https://doi.org/10.1038/s41586-020-2401-y
[93]  Abbott, B.P., Abbott, R., Abbott, T.D., Abernathy, M.R., Acernese, F., Ackley, K., et al. (2016) Observation of Gravitational Waves from a Binary Black Hole Merger. Physical Review Letters, 116, Article ID: 061102.
https://doi.org/10.1103/physrevlett.116.061102
[94]  Harry, G.M. (2010) Advanced LIGO: The Next Generation of Gravitational Wave Detectors. Classical and Quantum Gravity, 27, Article ID: 084006.
https://doi.org/10.1088/0264-9381/27/8/084006
[95]  Martynov, D.V., Hall, E.D., Abbott, B.P., Abbott, R., Abbott, T.D., Adams, C., et al. (2016) Sensitivity of the Advanced LIGO Detectors at the Beginning of Gravitational Wave Astronomy. Physical Review D, 93, Article ID: 112004.
https://doi.org/10.1103/physrevd.93.112004
[96]  Abbott, B.P., Abbott, R., Abbott, T.D., Abernathy, M.R., Acernese, F., Ackley, K., et al. (2016) Characterization of Transient Noise in Advanced LIGO Relevant to Gravitational Wave Signal Gw150914. Classical and Quantum Gravity, 33, Article ID: 134001.
https://doi.org/10.1088/0264-9381/33/13/134001
[97]  Aasi, J., Abbott, B.P., Abbott, R., Abbott, T., Abernathy, M.R., Ackley, K., et al. (2015) Advanced LIGO. Classical and Quantum Gravity, 32, Article ID: 074001.
https://doi.org/10.1088/0264-9381/32/7/074001
[98]  Abbott, B.P., Abbott, R., Abbott, T.D., Abernathy, M.R., Acernese, F., Ackley, K., et al. (2016) Binary Black Hole Mergers in the First Advanced LIGO Observing Run. Physical Review X, 6, Article ID: 041015.
https://doi.org/10.1103/physrevx.6.041015
[99]  Allen, B., Anderson, W.G., Brady, P.R., Brown, D.A. and Creighton, J.D.E. (2012) FINDCHIRP: An Algorithm for Detection of Gravitational Waves from Inspiraling Compact Binaries. Physical Review D, 85, Article ID: 122006.
https://doi.org/10.1103/physrevd.85.122006
[100]  Rabinowitz, P. (2016) A Practical Guide to Error Analysis. Oxford University Press.
[101]  Baker, M. (2016) 1,500 Scientists Lift the Lid on Reproducibility. Nature, 533, 452-454.
https://doi.org/10.1038/533452a
[102]  Mann, R.B. (2003) Quantum Field Theory in Curved Spacetime. Classical and Quan-tum Gravity, 20, L13.
[103]  Sachdev, S. (2011) Quantum Phase Transitions. 2nd Edition, Cambridge University Press.
https://doi.org/10.1017/cbo9780511973765
[104]  Peskin, M.E. (2018) An Introduction to Quantum Field Theory. CRC Press.
[105]  Weinberg, S. (1995) The Quantum Theory of Fields. Cambridge University Press.
https://doi.org/10.1017/cbo9781139644167
[106]  Shor, P.W. (1999) Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer. SIAM Review, 41, 303-332.
https://doi.org/10.1137/s0036144598347011
[107]  Grover, L.K. (1996) A Fast Quantum Mechanical Algorithm for Database Search. Proceedings of the 28th Annual ACM Symposium on Theory of Computing, Philadelphia, 22-24 May 1996, 212-219.
https://doi.org/10.1145/237814.237866
[108]  Bennett, C.H., Bernstein, E., Brassard, G. and Vazirani, U. (1997) Strengths and Weaknesses of Quantum Computing. SIAM Journal on Computing, 26, 1510-1523.
https://doi.org/10.1137/s0097539796300933
[109]  Kitaev, A.Y. (1995) Quantum Measurements and the Abelian Stabilizer Problem.
[110]  Gottesman, D. (1997) Stabilizer Codes and Quantum Error Correction.
[111]  Preskill, J. (1998) Fault-Tolerant Quantum Computation. In: Lo, H.-K., et al., Eds., Introduction to Quantum Computation and Information, World Scientific, 213-269.
https://doi.org/10.1142/9789812385253_0008
[112]  Aharonov, D. and Ben-Or, M. (2008) Fault-Tolerant Quantum Computation with Constant Error Rate. SIAM Journal on Computing, 38, 1207-1282.
https://doi.org/10.1137/s0097539799359385
[113]  Knill, E., Laflamme, R. and Zurek, W.H. (1998) Resilient Quantum Computation. Science, 279, 342-345.
https://doi.org/10.1126/science.279.5349.342
[114]  Terhal, B.M. (2015) Quantum Error Correction for Quantum Memories. Reviews of Modern Physics, 87, 307-346.
https://doi.org/10.1103/revmodphys.87.307
[115]  Hawking, S.W. (1976) Breakdown of Predictability in Gravitational Collapse. Physical Review D, 14, 2460-2473.
https://doi.org/10.1103/physrevd.14.2460
[116]  Page, D.N. (1993) Information in Black Hole Radiation. Physical Review Letters, 71, 3743-3746.
https://doi.org/10.1103/physrevlett.71.3743
[117]  Susskind, L. (2016) Computational Complexity and Black Hole Horizons. Fortschritte der Physik, 64, 24-43.
https://doi.org/10.1002/prop.201500092
[118]  Almheiri, A., Marolf, D., Polchinski, J. and Sully, J. (2013) Black Holes: Complementarity or Firewalls? Journal of High Energy Physics, 2013, Article No. 62.
https://doi.org/10.1007/jhep02(2013)062
[119]  Susskind, L., Thorlacius, L. and Uglum, J. (1993) The Stretched Horizon and Black Hole Complementarity. Physical Review D, 48, 3743-3761.
https://doi.org/10.1103/physrevd.48.3743
[120]  Hayden, P. and Preskill, J. (2007) Black Holes as Mirrors: Quantum Information in Random Subsystems. Journal of High Energy Physics, 2007, Article No. 120.
https://doi.org/10.1088/1126-6708/2007/09/120
[121]  Brown, A.R. and Susskind, L. (2019) Second Law of Quantum Complexity. Physical Review D, 100, Article ID: 046020.
[122]  Bekenstein, J.D. (1973) Black Holes and Entropy. Physical Review D, 7, 2333-2346.
https://doi.org/10.1103/physrevd.7.2333
[123]  Unruh, W.G. (1976) Notes on Black-Hole Evaporation. Physical Review D, 14, 870-892.
https://doi.org/10.1103/physrevd.14.870
[124]  Harlow, D. and Hayden, P. (2013) Quantum Computation vs. Firewalls. Journal of High Energy Physics, 2013, Article No. 85.
https://doi.org/10.1007/jhep06(2013)085
[125]  Hawking, S.W. (2005) Information Loss in Black Holes. Physical Review D, 72, Article ID: 084013.
https://doi.org/10.1103/physrevd.72.084013
[126]  Stanford, D. and Susskind, L. (2014) Complexity and Shock Wave Geometries. Physical Review D, 90, Article ID: 126007.
https://doi.org/10.1103/physrevd.90.126007
[127]  Sekino, Y. and Susskind, L. (2008) Fast Scramblers. Journal of High Energy Physics, 2008, Article No. 65.
https://doi.org/10.1088/1126-6708/2008/10/065
[128]  Ryu, S. and Takayanagi, T. (2006) Holographic Derivation of Entanglement Entropy from the Anti-de Sitter Space/Conformal Field Theory Correspondence. Physical Review Letters, 96, Article ID: 181602.
https://doi.org/10.1103/physrevlett.96.181602
[129]  Maldacena, J. (1999) The Large-N Limit of Superconformal Field Theories and Super-Gravity. International Journal of Theoretical Physics, 38, 1113-1133.
https://doi.org/10.1023/a:1026654312961
[130]  Witten, E. (1998) Anti De Sitter Space and Holography. Advances in Theoretical and Mathematical Physics, 2, 253-291.
https://doi.org/10.4310/atmp.1998.v2.n2.a2
[131]  Almheiri, A., Dong, X. and Harlow, D. (2015) Bulk Locality and Quantum Error Correction in AdS/CFT. Journal of High Energy Physics, 2015, Article No. 163.
https://doi.org/10.1007/jhep04(2015)163
[132]  Pastawski, F., Yoshida, B., Harlow, D. and Preskill, J. (2015) Holographic Quantum Error-Correcting Codes: Toy Models for the Bulk/Boundary Correspondence. Journal of High Energy Physics, 2015, Article No. 149.
https://doi.org/10.1007/jhep06(2015)149
[133]  Harlow, D. (2017) The Ryu-Takayanagi Formula from Quantum Error Correction. Communications in Mathematical Physics, 354, 865-912.
https://doi.org/10.1007/s00220-017-2904-z
[134]  Hayden, P., Nezami, S., Qi, X., Thomas, N., Walter, M. and Yang, Z. (2016) Holographic Duality from Random Tensor Networks. Journal of High Energy Physics, 2016, Article No. 9.
https://doi.org/10.1007/jhep11(2016)009
[135]  Dong, X., Harlow, D. and Wall, A.C. (2016) Reconstruction of Bulk Operators within the Entanglement Wedge in Gauge-Gravity Duality. Physical Review Letters, 117, Article ID: 021601.
https://doi.org/10.1103/physrevlett.117.021601
[136]  Deutsch, D. (2011) The Beginning of Infinity: Explanations That Transform the World. Penguin UK.
[137]  Putnam, H. (1967) Mathematics without Foundations. The Journal of Philosophy, 64, 5-22.
https://doi.org/10.2307/2024603
[138]  Baez, J. (2006) Quantum Quandaries: A Category-Theoretic Perspective. In: Rickles, D., et al., Eds., The Structural Foundations of Quantum Gravity, Oxford University Press, 240-265.
https://doi.org/10.1093/acprof:oso/9780199269693.003.0008
[139]  Rovelli, C. (1996) Relational Quantum Mechanics. International Journal of Theoretical Physics, 35, 1637-1678.
https://doi.org/10.1007/bf02302261
[140]  Deutsch, D. (1985) Quantum Theory, the Church-Turing Principle and the Universal Quantum Computer. Proceedings of the Royal Society of London A, 400, 97-117.
[141]  Mac Lane, S. (1998) Categories for the Working Mathematician. Springer.
[142]  Penrose, R. (1989) The Emperor’s New Mind: Concerning Computers, Minds, and the Laws of Physics. Oxford University Press.
[143]  Tarski, A. (1944) The Semantic Conception of Truth: And the Foundations of Semantics. Philosophy and Phenomenological Research, 4, 341-376.
https://doi.org/10.2307/2102968
[144]  Gödel, K. (1931) Über formal unentscheidbare Sätze der Principia Mathematica und verwandter Systeme I. Monatshefte für Mathematik und Physik, 38, 173-198.
https://doi.org/10.1007/bf01700692
[145]  Nagel, E. and Newman, J.R. (2001) Gödel’s Proof. NYU Press.
[146]  Smullyan, R.M. (1992) Gödel’s Incompleteness Theorems. Oxford University Press.
[147]  Hofstadter, D.R. (1979) Gödel, Escher, Bach: An Eternal Golden Braid. Basic Books.
[148]  Wheeler, J.A. (1990) Information, Physics, Quantum: The Search for Links. Complexity, Entropy, and the Physics of Information, 8, 3-28.
[149]  Lloyd, S. (2006) Programming the Universe: A Quantum Computer Scientist Takes on the Cosmos. Vintage.
[150]  Wolfram, S. (2002) A New Kind of Science. Wolfram Media.
[151]  von Neumann, J. (1955) Mathematical Foundations of Quantum Mechanics. Prince-ton University Press.
[152]  Bub, J. (2005) Quantum Mechanics Is about Quantum Information. Foundations of Physics, 35, 541-560.
https://doi.org/10.1007/s10701-004-2010-x
[153]  Heisenberg, W. (1927) Über den anschaulichen Inhalt der quantentheoretischen Kinematik und Mechanik. Zeitschrift für Physik, 43, 172-198.
https://doi.org/10.1007/bf01397280
[154]  Hawking, S.W. (2001) The Universe in a Nutshell. Bantam.
[155]  Kant, I. (1781) Critique of Pure Reason. Cambridge University Press (1998 Edition).
[156]  Tegmark, M. (2007) The Mathematical Universe. Foundations of Physics, 38, 101-150.
https://doi.org/10.1007/s10701-007-9186-9
[157]  Wigner, E.P. (1960) The Unreasonable Effectiveness of Mathematics in the Natural Sciences. Richard Courant Lecture in Mathematical Sciences Delivered at New York University, May 11, 1959. Communications on Pure and Applied Mathematics, 13, 1-14.
https://doi.org/10.1002/cpa.3160130102
[158]  Zuse, K. (1969) Calculating Space. MIT Technical Translation.
[159]  Kitaev, A., Shen, A. and Vyalyi, M. (2002) Classical and Quantum Computation. American Mathematical Society.
https://doi.org/10.1090/gsm/047
[160]  Preskill, J. (2018) Quantum Computing in the NISQ Era and Beyond. Quantum, 2, 79.
https://doi.org/10.22331/q-2018-08-06-79
[161]  Watrous, J. (2000) Succinct Quantum Proofs for Properties of Finite Groups. Proceedings 41st Annual Symposium on Foundations of Computer Science, Redondo Beach, 12-14 November 2000, 537-546.
https://doi.org/10.1109/sfcs.2000.892141
[162]  Aharonov, D. and Naveh, T. (2002) Quantum NP—A Survey.
[163]  Aharonov, D. and Green, F. (2008) A Quantum Inspired Proof of P#P IP.
[164]  Harrow, A.W. and Montanaro, A. (2017) Quantum Computational Supremacy. Nature, 549, 203-209.
https://doi.org/10.1038/nature23458
[165]  Borodin, A. (1980) Time Space Tradeoffs (Getting Closer to the P = ?NP Question) SIAM Journal on Computing, 9, 768-786.
[166]  Savage, J.E. (1998) Models of Computation: Exploring the Power of Computing. Addison-Wesley.
[167]  Bennett, C.H. (1989) Time/Space Trade-Offs for Reversible Computation. SIAM Journal on Computing, 18, 766-776.
https://doi.org/10.1137/0218053
[168]  Hawking, S.W. (1978) Spacetime foam. Nuclear Physics B, 144, 349-362.
https://doi.org/10.1016/0550-3213(78)90375-9
[169]  Ng, Y.J. (2003) Selected Topics in Planck-Scale Physics. Modern Physics Letters A, 18, 1073-1097.
https://doi.org/10.1142/s0217732303010934
[170]  Penrose, R. (1996) On Gravity’s Role in Quantum State Reduction. General Relativity and Gravitation, 28, 581-600.
https://doi.org/10.1007/bf02105068
[171]  Caves, C.M. (1981) Quantum-Mechanical Noise in an Interferometer. Physical Review D, 23, 1693-1708.
https://doi.org/10.1103/physrevd.23.1693
[172]  Wineland, D.J., Monroe, C., Itano, W.M., Leibfried, D., King, B.E. and Meekhof, D.M. (1998) Experimental Issues in Coherent Quantum-State Manipulation of Trapped Atomic Ions. Journal of Research of the National Institute of Standards and Technology, 103, 259.
https://doi.org/10.6028/jres.103.019
[173]  Shor, P.W. (1996) Fault-Tolerant Quantum Computation. Proceedings of 37th Conference on Foundations of Computer Science, Burlington, 14-16 October 1996, 56-65.
https://doi.org/10.1109/sfcs.1996.548464
[174]  DiVincenzo, D.P. (2000) The Physical Implementation of Quantum Computation. Fortschritte der Physik, 48, 771-783.
https://doi.org/10.1002/1521-3978(200009)48:9/11<771::aid-prop771>3.0.co;2-e
[175]  Braginsky, V.B. and Khalili, F.Y. (1995) Quantum Measurement. Cambridge University Press.
[176]  Lloyd, S. (1993) Quantum-Mechanical Computers and Uncomputability. Physical Review Letters, 71, 943-946.
https://doi.org/10.1103/physrevlett.71.943
[177]  Rideout, D., Jennewein, T., Amelino-Camelia, G., Demarie, T.F., Higgins, B.L., Kempf, A., et al. (2012) Fundamental Quantum Optics Experiments Conceivable with Satellites—Reaching Relativistic Distances and Velocities. Classical and Quantum Gravity, 29, Article ID: 224011.
https://doi.org/10.1088/0264-9381/29/22/224011
[178]  Unruh, W.G. (1995) Maintaining Coherence in Quantum Computers. Physical Review A, 51, 992-997.
https://doi.org/10.1103/physreva.51.992
[179]  Kimble, H.J. (2008) The Quantum Internet. Nature, 453, 1023-1030.
https://doi.org/10.1038/nature07127
[180]  Cirac, J.I., Zoller, P., Kimble, H.J. and Mabuchi, H. (1997) Quantum State Transfer and Entanglement Distribution among Distant Nodes in a Quantum Network. Physical Review Letters, 78, 3221-3224.
https://doi.org/10.1103/physrevlett.78.3221
[181]  Kok, P., Munro, W.J., Nemoto, K., Ralph, T.C., Dowling, J.P. and Milburn, G.J. (2007) Linear Optical Quantum Computing with Photonic Qubits. Reviews of Modern Physics, 79, 135-174.
https://doi.org/10.1103/revmodphys.79.135
[182]  Bennett, C. H. and Brassard, G. (1984) Quantum Cryptography: Public Key Distribution and Coin Tossing. Proceedings of IEEE International Conference on Computers, Systems and Signal Processing, Bangalore, 9-12 December 1984, 175-179.
[183]  Ekert, A.K. (1991) Quantum Cryptography Based on Bell’s Theorem. Physical Review Letters, 67, 661-663.
https://doi.org/10.1103/physrevlett.67.661
[184]  Bennett, C.H., Bessette, F., Brassard, G., Salvail, L. and Smolin, J. (1992) Experimental Quantum Cryptography. Journal of Cryptology, 5, 3-28.
https://doi.org/10.1007/bf00191318
[185]  Gottesman, D. and Chuang, I. (2004) Quantum Digital Signatures.
[186]  Lo, H. and Chau, H.F. (1999) Unconditional Security of Quantum Key Distribution over Arbitrarily Long Distances. Science, 283, 2050-2056.
https://doi.org/10.1126/science.283.5410.2050
[187]  Kent, A. (2005) Secure Classical Bit Commitment Using Fixed Capacity Communication Channels. Journal of Cryptology, 18, 313-335.
https://doi.org/10.1007/s00145-005-0905-8
[188]  Kent, A. (2011) Quantum Tasks in Minkowski Space. Classical and Quantum Gravity, 28, Article ID: 093001.
[189]  Kent, A. (2006) Tagging Systems. US Patent 7,075,438.
[190]  Kent, A. (1999) Unconditionally Secure Bit Commitment. Physical Review Letters, 83, 1447-1450.
https://doi.org/10.1103/physrevlett.83.1447
[191]  Barrett, J., Hardy, L. and Kent, A. (2005) No Signaling and Quantum Key Distribution. Physical Review Letters, 95, Article ID: 010503.
https://doi.org/10.1103/physrevlett.95.010503

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133