|
基于机理与数据驱动建模的自适应控制
|
Abstract:
针对无人驾驶观光车在路径跟踪过程中难以精确控制的问题,提出了一种基于机理与数据驱动的车辆运动模型的路径跟踪自适应控制算法。首先,提出一种基于机理模型与数据驱动的车辆运动模型。其次,使用改进了的ARX模型的参数辨识方法对误差进行了补偿。然后,设计了自适应路径跟踪控制方案,即求解目标函数准则函数,得到当前系统的最优控制律。最后,仿真结果表明设计路径跟踪自适应控制方案响应速度较快,且稳定性强。
Aiming at the difficulty of precise control in the course of path tracking of unmanned sightseeing vehicles, a path tracking adaptive control algorithm based on mechanism and data-driven vehicle motion model was proposed. Firstly, a vehicle motion model based on mechanism model and data drive is proposed. Secondly, the error is compensated by the improved parameter identification method of ARX model. Then, the adaptive path tracking control scheme is designed, that is, the objective function criterion function is solved, and the optimal control law of the current system is obtained. Finally, the simulation results show that the adaptive control scheme designed for path tracking has fast response speed and strong stability.
[1] | 《中国公路学报》编辑部. 中国汽车工程学术研究综述∙2017[J]. 中国公路学报, 2017, 30(6): 1-197. |
[2] | 陈耀庭, 郑燕萍. 无人驾驶汽车路径跟踪算法研究综述[J]. 林业机械与木工设备, 2023, 51(6): 21-26+35. |
[3] | Yang, T., Bai, Z., Li, Z., Feng, N. and Chen, L. (2021) Intelligent Vehicle Lateral Control Method Based on Feedforward + Predictive LQR Algorithm. Actuators, 10, Article No. 228. https://doi.org/10.3390/act10090228 |
[4] | Choi, Y., Lee, W., Kim, J. and Yoo, J. (2021) A Variable-Sampling Time Model Predictive Control Algorithm for Improving Path-Tracking Performance of a Vehicle. Sensors, 21, Article No. 6845. https://doi.org/10.3390/s21206845 |
[5] | Yu, S., Hirche, M., Huang, Y., Chen, H. and Allgöwer, F. (2021) Model Predictive Control for Autonomous Ground Vehicles: A Review. Autonomous Intelligent Systems, 1, Article No. 4. https://doi.org/10.1007/s43684-021-00005-z |
[6] | Awad, N., Lasheen, A., Elnaggar, M. and Kamel, A. (2022) Model Predictive Control with Fuzzy Logic Switching for Path Tracking of Autonomous Vehicles. ISA Transactions, 129, 193-205. https://doi.org/10.1016/j.isatra.2021.12.022 |
[7] | Mata, S., Zubizarreta, A. and Pinto, C. (2019) Robust Tube-Based Model Predictive Control for Lateral Path Tracking. IEEE Transactions on Intelligent Vehicles, 4, 569-577. https://doi.org/10.1109/tiv.2019.2938102 |
[8] | 胡杰, 陈锐鹏, 张志豪, 等. 基于RMPC的自动驾驶货车路径跟踪控制[J]. 汽车工程, 2023, 45(11): 2092-2103. |
[9] | Wang, J., Fader, M.T.H. and Marshall, J.A. (2023) Learning‐Based Model Predictive Control for Improved Mobile Robot Path Following Using Gaussian Processes and Feedback Linearization. Journal of Field Robotics, 40, 1014-1033. https://doi.org/10.1002/rob.22165 |
[10] | Carlucho, I., De Paula, M. and Acosta, G.G. (2020) An Adaptive Deep Reinforcement Learning Approach for MIMO PID Control of Mobile Robots. ISA Transactions, 102, 280-294. https://doi.org/10.1016/j.isatra.2020.02.017 |
[11] | Zhang, K., Sun, Q. and Shi, Y. (2021) Trajectory Tracking Control of Autonomous Ground Vehicles Using Adaptive Learning Mpc. IEEE Transactions on Neural Networks and Learning Systems, 32, 5554-5564. https://doi.org/10.1109/tnnls.2020.3048305 |
[12] | 王文娟, 李俊. 一种RBF神经网络的直接自适应滑模轨迹跟踪控制设计[J]. 机械设计与制造, 2020(11): 183-187. |
[13] | Yang, Q., Ma, X., Wang, W. and Peng, D. (2022) Adaptive Non-Singular Fast Terminal Sliding Mode Trajectory Tracking Control for Robot Manipulators. Electronics, 11, Article No. 3672. https://doi.org/10.3390/electronics11223672 |
[14] | Mirzaeinejad, H. (2019) Optimization-Based Nonlinear Control Laws with Increased Robustness for Trajectory Tracking of Non-Holonomic Wheeled Mobile Robots. Transportation Research Part C: Emerging Technologies, 101, 1-17. https://doi.org/10.1016/j.trc.2019.02.003 |
[15] | 许万, 周航. 基于路径评价模型的自适应轨迹跟踪控制[J]. 计算机工程与应用, 2023, 59(24): 336-344. |
[16] | 侯忠生, 董航瑞, 金尚泰. 基于坐标补偿的自动泊车系统无模型自适应控制[J]. 自动化学报, 2015, 41(4): 823-831. |