全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

平面代数曲线上Birkhoff插值问题研究
Research on the Birkhoff Interpolation Problem on Plane Algebraic Curves

DOI: 10.12677/aam.2025.141013, PP. 98-104

Keywords: Birkhoff插值,平面代数曲线,插值适定泛函组
Birkhoff Interpolation
, Planar Algebraic Curves, Well-Posed Interpolation Functional Systems

Full-Text   Cite this paper   Add to My Lib

Abstract:

本文以一元Birkhoff插值研究结果为基础,对二元Birkhoff插值泛函组的适定性问题进行了研究。通过提出弱Gr?bner基的概念及其发现其性质,提出了一种利用两条不同次数代数曲线相交的点,构造出二元Birkhoff插值问题适定泛函组的新方法,从而将该方法所得到的结果推广到一般情形。并得到了构造平面代数曲线二元Birkhoff插值适定泛函组的一般性方法和实用性较强的理论,最后给出了具体实验算例,对所得研究结论给予了验证。
This paper takes the research results of univariate Birkhoff interpolation as its foundation to study the stability problem of two-dimensional Birkhoff interpolation generalized function sets. By introducing the concept and properties of weak Gr?bner bases, a new method is obtained which utilizes the intersection of any two arbitrary algebraic curves to construct the two-dimensional Birkhoff well-posed interpolation functional systems. This method extends the research direction’s findings to general cases, providing a general approach and practical theory for constructing planar algebraic curve well-posed interpolation functional systems. Finally, specific experimental examples are provided to validate the research conclusions obtained.

References

[1]  Birkhoff, G.D. (1906) General Mean Value and Remainder Theorems with Applications to Mechanical Differentiation and Quadrature. Transactions of the American Mathematical Society, 7, 107-136.
https://doi.org/10.1090/S0002-9947-1906-1500736-1
[2]  Lorentz, R.A. (1992) Multivariate Birkhoff Interpolation. Springer Verlag.
https://doi.org/10.1007/BFb0088788
[3]  崔利宏, 杨爽. 二元Birkhoff插值泛函组适定性问题[J]. 吉首大学学报(自然科学版), 2008, 29(4): 14-17.
[4]  崔利宏. 多元切触插值某些问题的研究[D]: [博士学位论文]. 大连: 大连理工大学应用数学系, 2006.
[5]  Lang, X.Z. and Lü, C.M. (1998) Properly Posed Set of Nodes for Bivariate Lagrange Interpolation. Approximation Theory IX, 2, 189-196.
[6]  崔利宏. 多元Lagrange插值与多元Kergin插值[D]: [博士学位论文]. 长春: 吉林大学, 2003.
[7]  杨路, 张景中, 侯晓荣. 非线性代数方程组与定理的机器证明[M]. 上海: 上海科技教育出版社, 1996.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133