|
基于优化BP神经网络的全国碳排放量的预测
|
Abstract:
本文根据2000年至2021年我国各省份的碳排放量数据,基于碳排放量影响因素建立BP神经网络和遗传算法优化的BP神经网络模型,对我国的碳排放量进行预测。结果表明,遗传算法优化的BP神经网络模型的预测精度优于BP神经网络,更适合用于碳排放量的预测。
Based on the carbon emission data of various provinces in China from 2000 to 2021, this paper establishes a BP neural network model optimized by BP neural network and genetic algorithm based on the influencing factors of carbon emission to forecast China’s carbon emission. The results show that the prediction accuracy of BP neural network model optimized by GA is better than that of BP neural network, and it is more suitable for carbon emission prediction.
[1] | Santos, G., Behrentz, E. and Bristow, A.L. (2019) A Hybrid Forecast Model for Carbon Emissions Prediction. Journal of Cleaner Production, 208, 1443-1454. |
[2] | Abdullah, M.M. and Alim, M. (2017) A Comparative Study of Artificial Neural Network and Time Series Model for Carbon Emissions Forecasting. Energy Procedia, 138, 418-423. |
[3] | Kim, J., Lee, S. and Choi, K. (2018) Deep Learning-Based Carbon Emissions Prediction Model Considering Multiple Influencing Factors. Sustainability, 10, Article 4173. |
[4] | 王磊, 李刚, 袁炳辉. 基于BP神经网络的碳排放量预测模型研究[J]. 华南理工大学学报(自然科学版), 2019, 47(1), 86-92. |
[5] | 郑春根, 庄毅雄. 基于灰色关联分析的碳排放预测模型研究[J]. 系统仿真学报, 2017, 29(6), 1150-1156. |
[6] | 马连博, 李楠, 程适. 进化神经网络原理、模型及方法综述[J]. 陕西师范大学学报(自然科学版), 2021, 49(5): 30-38, 133. |
[7] | 邓竞. 浅谈遗传算法原理及在神经网络优化中的应用[J]. 科技信息, 2011(27): 35, 95. |
[8] | 王艳旭. 基于系统聚类与BP神经网络的世界碳排放预测模型及应用研究[D]: [硕士学位论文]. 南昌: 南昌大学, 2016. |
[9] | 任宏洋, 杜若岚, 谢贵林, 等. 中国碳排放影响因素及识别方法研究现状[J]. 环境工程, 2023, 41(10): 195-203, 244. |