全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

淹没式移动水射流的倾角对破土深度的影响实验研究
Experimental Study on the Effect of Inclination Angle of Submerged Mobile Water Jets on the Groundbreaking Depth

DOI: 10.12677/aep.2025.151012, PP. 86-95

Keywords: 移动射流,射流破土,射流角度
Moving Jets
, Jet Groundbreaking, Jet Angle

Full-Text   Cite this paper   Add to My Lib

Abstract:

本文以淹没式移动水射流为研究对象,通过实验分析在一定射流速度、移动速度、土体抗剪强度下,射流的倾角对于开沟破土深度的在相同射流能力下,改变射流倾角会略微影响开沟深度。基于LS-DYNA搭建移动射流破土开沟仿真模型,分析射流倾角对于破土开沟效果的影响,并得到存在最佳射流倾角的结论。搭建单喷嘴移动射流破土实验装置,进行了单喷嘴移动射流破土开沟实验,进一步验证了仿真得到的结论。
This paper takes the submerged mobile water jet as the research object, and analyzes the influence of the inclination angle of the jet on the depth of trenching and breaking through experiments under a certain jet speed, moving speed and soil shear strength. Based on LS-DYNA, the simulation model of mobile jet breaking and trenching is constructed to analyze the influence of jet inclination angle on the effect of breaking and trenching, and the conclusion that there is an optimal jet inclination angle is obtained. A single-nozzle mobile jet breaking experimental device was built, and a single-nozzle mobile jet breaking trenching experiment was carried out to further verify the conclusions obtained from the simulation.

References

[1]  王亮. 国内海底管道挖沟装备现状介绍[C]//中国造船工程学会, 中国海洋学会, 中国石油学会, 中国高科技产业化研究会. 2016年深海能源大会论文集. 2016: 390-393.
[2]  唐立志. 适用于硬质黏土的淹没射流物理模型[J]. 油气储运, 2016, 35(4): 432-438.
[3]  董俊伟. 海底开沟机射流破土数值模拟研究[D]: [硕士学位论文]. 大连: 大连理工大学, 2022.
[4]  郑健, 来向华, 陈小玲, 等. 黏性土淹没射流破土实验研究[J]. 海洋学研究, 2019, 37(1): 67-74.
[5]  Zhang, S., Zhao, M., Ge, T. and Wang, C. (2016) Experimental Research on Trenching in Stiff Clay by Submerged Vertical Traveling Jets. Journal of Coastal Research, 32, 365-373.
https://doi.org/10.2112/jcoastres-d-14-00038.1
[6]  Liu, J., Lan, X., Wang, G., Luo, S. and Yang, Z. (2022) Study on the Erosion Morphology of Cohesive Soil under the Vertical Impact of a High-Pressure Moving Water Jet. Applied Sciences, 12, Article No. 12343.
https://doi.org/10.3390/app122312343
[7]  Li, J., Lee, M., Kang, H., Kim, M. and Cho, G. (2021) Design, Performance Evaluation and Field Test of a Water Jet Tool for ROV Trencher. Journal of Marine Science and Engineering, 9, Article No. 296.
https://doi.org/10.3390/jmse9030296
[8]  Wang, B., van Rhee, C., Nobel, A. and Keetels, G. (2021) Modeling the Hydraulic Excavation of Cohesive Soil by a Moving Vertical Jet. Ocean Engineering, 227, Article ID: 108796.
https://doi.org/10.1016/j.oceaneng.2021.108796
[9]  Pan, Y., Zhai, S., Meng, X., Pei, K. and Huo, F. (2022) Study on the Fracturing of Rock by High-Speed Water Jet Impact. Processes, 11, Article No. 114.
https://doi.org/10.3390/pr11010114
[10]  Liang, D., Zhao, X. and Martinelli, M. (2017) MPM Simulations of the Interaction between Water Jet and Soil Bed. Procedia Engineering, 175, 242-249.
https://doi.org/10.1016/j.proeng.2017.01.019
[11]  杨志鹏, 刘剑, 蓝雄东, 等. 基于ALE算法的水射流破土特性[J]. 科学技术与工程, 2023, 23(15): 6378-6384.
[12]  邱玥钦, 蓝雄东, 刘剑, 等. 基于响应面分析的淹没水射流破土施工参数优化设计[J]. 矿业科学学报, 2024, 9(1): 32-41.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133