全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

天然高分子材料在骨缺损修复中的研究进展
Research Progress of Natural Polymer Materials in Bone Defect Repair

DOI: 10.12677/acm.2025.151122, PP. 907-914

Keywords: 天然高分子材料,胶原蛋白,壳聚糖,丝素蛋白,明胶,藻酸盐,骨缺损修复
Natural Polymer Materials
, Collagen, Chitosan, Fibroin, Gelatin, Alginate, Bone Defect Repair

Full-Text   Cite this paper   Add to My Lib

Abstract:

骨组织是为人体提供机械支撑的动态器官,炎症、肿瘤、外伤等诸多因素可导致骨缺损。自体骨移植、同种异体骨移植和异种骨移植受限于供体的可用性和供区并发症等问题。传统生物可降解材料,包括可降解金属和陶瓷等,面临耐腐蚀性不足、应力屏蔽效应及难以调控的降解速率等挑战。而天然高分子材料,如胶原蛋白、壳聚糖和丝素蛋白等,具备优异的生物相容性、可降解性及促进细胞增殖和迁移的特性,已被广泛用于骨缺损修复的研究。本文对此类天然高分子材料的来源、特性进行概述,介绍了它们常见的制备方法及应用形式,最后对其应用前景进行展望。
Bone tissue is a dynamic organ that offers mechanical support for the human body. Numerous factors such as inflammation, tumors, trauma, and others can result in bone defects. Autologous bone grafting, allogeneic bone grafting, and xenogeneic bone grafting are restricted by issues such as the availability of donors and complications in the donor areas. Traditional biodegradable materials, including degradable metals and ceramics, encounter challenges like insufficient corrosion resistance, stress shielding effects, and difficult-to-regulate degradation rates. Natural polymeric materials, like collagen, chitosan, and silk fibroin, possess outstanding biocompatibility, biodegradability, and the property of promoting cell proliferation and migration, and have been extensively utilized in studies on bone defect repair. This paper summarizes the sources and characteristics of these natural polymeric materials, presents their common preparation methods and application forms, and finally looks forward to their application prospects.

References

[1]  Majidinia, M., Sadeghpour, A. and Yousefi, B. (2017) The Roles of Signaling Pathways in Bone Repair and Regeneration. Journal of Cellular Physiology, 233, 2937-2948.
https://doi.org/10.1002/jcp.26042
[2]  Migliorini, F., Cuozzo, F., Torsiello, E., Spiezia, F., Oliva, F. and Maffulli, N. (2021) Autologous Bone Grafting in Trauma and Orthopaedic Surgery: An Evidence-Based Narrative Review. Journal of Clinical Medicine, 10, Article 4347.
https://doi.org/10.3390/jcm10194347
[3]  Miron, R.J., Gruber, R., Hedbom, E., Saulacic, N., Zhang, Y., Sculean, A., et al. (2012) Impact of Bone Harvesting Techniques on Cell Viability and the Release of Growth Factors of Autografts. Clinical Implant Dentistry and Related Research, 15, 481-489.
https://doi.org/10.1111/j.1708-8208.2012.00440.x
[4]  Aoki, K., Ideta, H., Komatsu, Y., Tanaka, A., Kito, M., Okamoto, M., et al. (2024) Bone-Regeneration Therapy Using Biodegradable Scaffolds: Calcium Phosphate Bioceramics and Biodegradable Polymers. Bioengineering, 11, Article 180.
https://doi.org/10.3390/bioengineering11020180
[5]  Abazari, M.F., Soleimanifar, F., Amini Faskhodi, M., Mansour, R.N., Amini Mahabadi, J., Sadeghi, S., et al. (2019) Improved Osteogenic Differentiation of Human Induced Pluripotent Stem Cells Cultured on Polyvinylidene Fluoride/Collagen/Platelet‐Rich Plasma Composite Nanofibers. Journal of Cellular Physiology, 235, 1155-1164.
https://doi.org/10.1002/jcp.29029
[6]  Zhao, Y., Zheng, J., Xiong, Y., Wang, H., Yang, S., Sun, X., et al. (2022) Hierarchically Engineered Artificial Lamellar Bone with High Strength and Toughness. Small Structures, 4, Article ID: 2200256.
https://doi.org/10.1002/sstr.202200256
[7]  Wang, J., Liu, Q., Guo, Z., Pan, H., Liu, Z. and Tang, R. (2021) Progress on Biomimetic Mineralization and Materials for Hard Tissue Regeneration. ACS Biomaterials Science & Engineering, 9, 1757-1773.
https://doi.org/10.1021/acsbiomaterials.1c01070
[8]  Wu, E., Huang, L., Shen, Y., Wei, Z., Li, Y., Wang, J., et al. (2024) Application of Gelatin-Based Composites in Bone Tissue Engineering. Heliyon, 10, e36258.
https://doi.org/10.1016/j.heliyon.2024.e36258
[9]  Sun, W., Xie, W., Hu, K., Yang, Z., Han, L., Li, L., et al. (2024) Three-Dimensional Bioprinting of Strontium-Modified Controlled Assembly of Collagen Polylactic Acid Composite Scaffold for Bone Repair. Polymers, 16, Article 498.
https://doi.org/10.3390/polym16040498
[10]  Hosseini, M., Dadashi‐Noshahr, K., Islami, M., Saburi, E., Nikpoor, A.R., Mellati, A., et al. (2020) A Novel Silk/Pes Hybrid Nanofibrous Scaffold Promotes the in Vitro Proliferation and Differentiation of Adipose‐Derived Mesenchymal Stem Cells into Insulin Producing Cells. Polymers for Advanced Technologies, 31, 1857-1864.
https://doi.org/10.1002/pat.4912
[11]  Kołodziejska, M., Jankowska, K., Klak, M. and Wszoła, M. (2021) Chitosan as an Underrated Polymer in Modern Tissue Engineering. Nanomaterials, 11, Article 3019.
https://doi.org/10.3390/nano11113019
[12]  Tan, Y., Rajoka, M.S.R., Ke, Z., Mehwish, H.M., Deng, W., Li, J., et al. (2022) Effect of Squid Cartilage Chitosan Molecular Structure on the Properties of Its Monofilament as an Absorbable Surgical Suture. Polymers, 14, Article 1306.
https://doi.org/10.3390/polym14071306
[13]  Bauer, S., Schmuki, P., von der Mark, K. and Park, J. (2013) Engineering Biocompatible Implant Surfaces. Progress in Materials Science, 58, 261-326.
https://doi.org/10.1016/j.pmatsci.2012.09.001
[14]  João, C.F.C., Kullberg, A.T., Silva, J.C. and Borges, J.P. (2017) Chitosan Inverted Colloidal Crystal Scaffolds: Influence of Molecular Weight on Structural Stability. Materials Letters, 193, 50-53.
https://doi.org/10.1016/j.matlet.2017.01.096
[15]  Garcia Garcia, C.E., Bossard, F. and Rinaudo, M. (2021) Electrospun Biomaterials from Chitosan Blends Applied as Scaffold for Tissue Regeneration. Polymers, 13, Article 1037.
https://doi.org/10.3390/polym13071037
[16]  Li, M., You, J., Qin, Q., Liu, M., Yang, Y., Jia, K., et al. (2023) A Comprehensive Review on Silk Fibroin as a Persuasive Biomaterial for Bone Tissue Engineering. International Journal of Molecular Sciences, 24, Article 2660.
https://doi.org/10.3390/ijms24032660
[17]  Kim, M.H., Kim, B.S., Lee, J., Cho, D., Kwon, O.H. and Park, W.H. (2017) Silk Fibroin/Hydroxyapatite Composite Hydrogel Induced by γ-Ray Irradiation for Bone Tissue Engineering. Biomaterials Research, 21, Article 12.
https://doi.org/10.1186/s40824-017-0098-2
[18]  Matinong, A.M.E., Pickering, K.L., Waterland, M.R., Chisti, Y. and Haverkamp, R.G. (2024) Gelatin and Collagen from Sheepskin. Polymers, 16, Article 1563.
https://doi.org/10.3390/polym16111563
[19]  Wang, H., Boerman, O.C., Sariibrahimoglu, K., Li, Y., Jansen, J.A. and Leeuwenburgh, S.C.G. (2012) Comparison of Micro Vs. Nanostructured Colloidal Gelatin Gels for Sustained Delivery of Osteogenic Proteins: Bone Morphogenetic Protein-2 and Alkaline Phosphatase. Biomaterials, 33, 8695-8703.
https://doi.org/10.1016/j.biomaterials.2012.08.024
[20]  Codrea, C.I., Baykara, D., Mitran, R., Koyuncu, A.C.Ç., Gunduz, O. and Ficai, A. (2024) 3D-Bioprinted Gelatin Methacryloyl-Strontium-Doped Hydroxyapatite Composite Hydrogels Scaffolds for Bone Tissue Regeneration. Polymers, 16, Article 1932.
https://doi.org/10.3390/polym16131932
[21]  Saska, S., Teixeira, L.N., Tambasco de Oliveira, P., Minarelli Gaspar, A.M., Lima Ribeiro, S.J., Messaddeq, Y., et al. (2012) Bacterial Cellulose-Collagen Nanocomposite for Bone Tissue Engineering. Journal of Materials Chemistry, 22, 22102-22112.
https://doi.org/10.1039/c2jm33762b
[22]  Reakasame, S. and Boccaccini, A.R. (2017) Oxidized Alginate-Based Hydrogels for Tissue Engineering Applications: A Review. Biomacromolecules, 19, 3-21.
https://doi.org/10.1021/acs.biomac.7b01331
[23]  Szekalska, M., Puciłowska, A., Szymańska, E., Ciosek, P. and Winnicka, K. (2016) Alginate: Current Use and Future Perspectives in Pharmaceutical and Biomedical Applications. International Journal of Polymer Science, 2016, Article ID: 7697031.
https://doi.org/10.1155/2016/7697031
[24]  Chen, X., Wu, T., Bu, Y., Yan, H. and Lin, Q. (2024) Fabrication and Biomedical Application of Alginate Composite Hydrogels in Bone Tissue Engineering: A Review. International Journal of Molecular Sciences, 25, Article 7810.
https://doi.org/10.3390/ijms25147810
[25]  Guo, L., Chen, H., Li, Y., Zhou, J. and Chen, J. (2023) Biocompatible Scaffolds Constructed by Chondroitin Sulfate Microspheres Conjugated 3d-Printed Frameworks for Bone Repair. Carbohydrate Polymers, 299, Article ID: 120188.
https://doi.org/10.1016/j.carbpol.2022.120188
[26]  Fenbo, M., Sijing, L., Ruiz-Ortega, L.I., Yuanjun, Z., Lei, X., Kui, W., et al. (2020) Effects of Alginate/Chondroitin Sulfate-Based Hydrogels on Bone Defects Healing. Materials Science and Engineering: C, 116, Article ID: 111217.
https://doi.org/10.1016/j.msec.2020.111217
[27]  Gong, C., Yang, J., Zhang, X., Wei, Z., Wang, X., Huang, X., et al. (2023) Functionalized Magnesium Phosphate Cement Induces in Situ Vascularized Bone Regeneration via Surface Lyophilization of Chondroitin Sulfate. Biomedicines, 12, Article 74.
https://doi.org/10.3390/biomedicines12010074
[28]  Yoo, D., Oh, M., Kim, M. and Lee, D. (2024) In Vivo Evaluation of Demineralized Bone Matrix with Cancellous Bone Putty Formed Using Hydroxyethyl Cellulose as an Allograft Material in a Canine Tibial Defect Model. Animals, 14, Article 2997.
https://doi.org/10.3390/ani14202997
[29]  Feroz, S., Muhammad, N., Ratnayake, J. and Dias, G. (2020) Keratin-Based Materials for Biomedical Applications. Bioactive Materials, 5, 496-509.
https://doi.org/10.1016/j.bioactmat.2020.04.007
[30]  Huang, R., Zhu, X.M., Tu, H.Y. and Wan, A. (2014) The Crystallization Behavior of Porous PLA Prepared by Modified Solvent Casting/Particulate Leaching Technique for Potential Use of Tissue Engineering Scaffold. Materials Letters, 136, 126-129.
https://doi.org/10.1016/j.matlet.2014.08.044
[31]  Janik, H. and Marzec, M. (2015) A Review: Fabrication of Porous Polyurethane Scaffolds. Materials Science and Engineering: C, 48, 586-591.
https://doi.org/10.1016/j.msec.2014.12.037
[32]  Song, P., Zhou, C., Fan, H., Zhang, B., Pei, X., Fan, Y., et al. (2018) Novel 3D Porous Biocomposite Scaffolds Fabricated by Fused Deposition Modeling and Gas Foaming Combined Technology. Composites Part B: Engineering, 152, 151-159.
https://doi.org/10.1016/j.compositesb.2018.06.029
[33]  Kalluri, L., Duan, Y. and Janorkar, A.V. (2024) Electrospun Polymeric Nanofibers for Dental Applications. Journal of Applied Polymer Science, 141, e55224.
https://doi.org/10.1002/app.55224
[34]  Kam, D., Rulf, O., Reisinger, A., Lieberman, R. and Magdassi, S. (2024) 3D Printing by Stereolithography Using Thermal Initiators. Nature Communications, 15, Article No. 2285.
https://doi.org/10.1038/s41467-024-46532-0
[35]  Norjeli, M.F., Tamchek, N., Osman, Z., Mohd Noor, I.S., Kufian, M.Z. and Ghazali, M.I.B.M. (2024) Correction: Norjeli et al. Additive Manufacturing Polyurethane Acrylate via Stereolithography for 3D Structure Polymer Electrolyte Application. Gels 2022, 8, 589. Gels, 10, Article 423.
https://doi.org/10.3390/gels10070423
[36]  Gnanasagaran, C.L., Ramachandran, K., Jamadon, N.H., Kumar, V.H., Muchtar, A., Pazhani, A., et al. (2023) Microstructural and Mechanical Behaviours of Y-TZP Prepared via Slip-Casting and Fused Deposition Modelling (FDM). Heliyon, 9, e21705.
https://doi.org/10.1016/j.heliyon.2023.e21705
[37]  Hwang, E., Hong, J., Yoon, J. and Hong, S. (2022) Direct Writing of Functional Layer by Selective Laser Sintering of Nanoparticles for Emerging Applications: A Review. Materials, 15, Article 6006.
https://doi.org/10.3390/ma15176006
[38]  Budharaju, H., Sundaramurthi, D. and Sethuraman, S. (2024) Embedded 3D Bioprinting—An Emerging Strategy to Fabricate Biomimetic & Large Vascularized Tissue Constructs. Bioactive Materials, 32, 356-384.
https://doi.org/10.1016/j.bioactmat.2023.10.012
[39]  Xu, Z., Li, K., Zhou, K., Li, S., Chen, H., Zeng, J., et al. (2023) 3D Printing Silk Fibroin/Hydroxyapatite/Sodium Alginate Composite Scaffolds for Bone Tissue Engineering. Fibers and Polymers, 24, 275-283.
https://doi.org/10.1007/s12221-023-00090-2
[40]  Piaia, L., Silva, S.S., Gomes, J.M., R Franco, A., Fernandes, E.M., Lobo, F.C.M., et al. (2021) Chitosan/β-TCP Composites Scaffolds Coated with Silk Fibroin: A Bone Tissue Engineering Approach. Biomedical Materials, 17, Article ID: 015003.
https://doi.org/10.1088/1748-605x/ac355a
[41]  Peng, K., Chen, S., Senthooran, V., Hu, X., Qi, Y., Zhang, C., et al. (2024) Microporous Polylactic Acid/Chitin Nanocrystals Composite Scaffolds Using In-Situ Foaming 3D Printing for Bone Tissue Engineering. International Journal of Biological Macromolecules, 279, Article ID: 135055.
https://doi.org/10.1016/j.ijbiomac.2024.135055
[42]  Arslan, Y.E., Sezgin Arslan, T., Derkus, B., Emregul, E. and Emregul, K.C. (2017) Fabrication of Human Hair Keratin/Jellyfish Collagen/Eggshell-Derived Hydroxyapatite Osteoinductive Biocomposite Scaffolds for Bone Tissue Engineering: From Waste to Regenerative Medicine Products. Colloids and Surfaces B: Biointerfaces, 154, 160-170.
https://doi.org/10.1016/j.colsurfb.2017.03.034
[43]  Janmohammadi, M., Nazemi, Z., Salehi, A.O.M., Seyfoori, A., John, J.V., Nourbakhsh, M.S., et al. (2023) Cellulose-based Composite Scaffolds for Bone Tissue Engineering and Localized Drug Delivery. Bioactive Materials, 20, 137-163.
https://doi.org/10.1016/j.bioactmat.2022.05.018
[44]  Al-Madhagy, G., Darwich, K., Alghoraibi, I. and Al-Moraissi, E.A. (2023) Radiographic Evaluation of Alveolar Ridge Preservation Using a Chitosan/Polyvinyl Alcohol Nanofibrous Matrix: A Randomized Clinical Study. Journal of Cranio-Maxillofacial Surgery, 51, 772-779.
https://doi.org/10.1016/j.jcms.2023.09.020
[45]  Kawai, T., Suzuki, O., Matsui, K., Tanuma, Y., Takahashi, T. and Kamakura, S. (2015) Octacalcium Phosphate Collagen Composite Facilitates Bone Regeneration of Large Mandibular Bone Defect in Humans. Journal of Tissue Engineering and Regenerative Medicine, 11, 1641-1647.
https://doi.org/10.1002/term.2110
[46]  Lampropoulou-Adamidou, K., Karlafti, E., Argyrou, C., Makris, K., Trovas, G., Dontas, I.A., et al. (2022) Effect of Calcium and Vitamin D Supplementation with and without Collagen Peptides on Volumetric and Areal Bone Mineral Density, Bone Geometry and Bone Turnover in Postmenopausal Women with Osteopenia. Journal of Clinical Densitometry, 25, 357-372.
https://doi.org/10.1016/j.jocd.2021.11.011
[47]  Gabay, E., Katorza, A., Zigdon‐Giladi, H., Horwitz, J. and Machtei, E.E. (2022) Histological and Dimensional Changes of the Alveolar Ridge Following Tooth Extraction When Using Collagen Matrix and Collagen‐Embedded Xenogenic Bone Substitute: A Randomized Clinical Trial. Clinical Implant Dentistry and Related Research, 24, 382-390.
https://doi.org/10.1111/cid.13085
[48]  Balice, G., Paolantonio, M., De Ninis, P., Rexhepi, I., Serroni, M., Frisone, A., et al. (2024) Treatment of Unfavorable Intrabony Defects with Autogenous Bone Graft in Combination with Leukocyte-and Platelet-Rich Fibrin or Collagen Membranes: A Non-Inferiority Study. Medicina, 60, Article 1091.
https://doi.org/10.3390/medicina60071091
[49]  Guillén-Carvajal, K., Valdez-Salas, B., Beltrán-Partida, E., Salomón-Carlos, J. and Cheng, N. (2023) Chitosan, Gelatin, and Collagen Hydrogels for Bone Regeneration. Polymers, 15, Article 2762.
https://doi.org/10.3390/polym15132762
[50]  Zheng, A., Wang, X., Xin, X., Peng, L., Su, T., Cao, L., et al. (2023) Promoting Lacunar Bone Regeneration with an Injectable Hydrogel Adaptive to the Microenvironment. Bioactive Materials, 21, 403-421.
https://doi.org/10.1016/j.bioactmat.2022.08.031
[51]  Wang, H., Hu, B., Li, H., Feng, G., Pan, S., Chen, Z., et al. (2022) Biomimetic Mineralized Hydroxyapatite Nanofiber-Incorporated Methacrylated Gelatin Hydrogel with Improved Mechanical and Osteoinductive Performances for Bone Regeneration. International Journal of Nanomedicine, 17, 1511-1529.
https://doi.org/10.2147/ijn.s354127
[52]  Alcântara, C.E.P., Castro, M.A.A., Noronha, M.S.D., Martins-Junior, P.A., Mendes, R.D.M., Caliari, M.V., et al. (2018) Hyaluronic Acid Accelerates Bone Repair in Human Dental Sockets: A Randomized Triple-Blind Clinical Trial. Brazilian Oral Research, 32, e84.
https://doi.org/10.1590/1807-3107bor-2018.vol32.0084
[53]  Guo, X., Zong, X., Song, G., Zhao, J., Lai, C., Zhang, D., et al. (2024) Would Hyaluronic Acid-Induced Mental Bone Resorption Be a Concern? A Prospective Controlled Cohort Study and an Updated Retrospective Cohort Study. International Journal of Surgery, 110, 1502-1510.
https://doi.org/10.1097/js9.0000000000000955
[54]  Li, Y., Tang, S., Luo, Z., Liu, K., Luo, Y., Wen, W., et al. (2024) Chitin Whisker/chitosan Liquid Crystal Hydrogel Assisted Scaffolds with Bone-Like ECM Microenvironment for Bone Regeneration. Carbohydrate Polymers, 332, Article ID: 121927.
https://doi.org/10.1016/j.carbpol.2024.121927
[55]  Kołakowska, A., Kołbuk, D., Chwojnowski, A., Rafalski, A. and Gadomska-Gajadhur, A. (2023) Chitosan-Based High-Intensity Modification of the Biodegradable Substitutes for Cancellous Bone. Journal of Functional Biomaterials, 14, Article 410.
https://doi.org/10.3390/jfb14080410
[56]  Yu, L., Wei, Q., Li, J., Wang, H., Meng, Q., Xie, E., et al. (2023) Engineered Periosteum-Diaphysis Substitutes with Biomimetic Structure and Composition Promote the Repair of Large Segmental Bone Defects. Composites Part B: Engineering, 252, Article ID: 110505.
https://doi.org/10.1016/j.compositesb.2023.110505
[57]  Lu, L., Liu, X., Sun, Y., Wang, S., Liu, J., Ge, S., et al. (2024) Silk‐Fabric Reinforced Silk for Artificial Bones. Advanced Materials, 36, Article ID: 2308748.
https://doi.org/10.1002/adma.202308748
[58]  Wang, H., Leeuwenburgh, S.C.G., Li, Y. and Jansen, J.A. (2012) The Use of Micro-and Nanospheres as Functional Components for Bone Tissue Regeneration. Tissue Engineering Part B: Reviews, 18, 24-39.
https://doi.org/10.1089/ten.teb.2011.0184
[59]  Dong, Z., Meng, X., Yang, W., Zhang, J., Sun, P., Zhang, H., et al. (2021) Progress of Gelatin-Based Microspheres (GMSS) as Delivery Vehicles of Drug and Cell. Materials Science and Engineering: C, 122, Article ID: 111949.
https://doi.org/10.1016/j.msec.2021.111949
[60]  Qayyum, A.S., Jain, E., Kolar, G., Kim, Y., Sell, S.A. and Zustiak, S.P. (2017) Design of Electrohydrodynamic Sprayed Polyethylene Glycol Hydrogel Microspheres for Cell Encapsulation. Biofabrication, 9, Article ID: 025019.
https://doi.org/10.1088/1758-5090/aa703c
[61]  Zhang, Y., Wang, W., Chen, Z., Shi, H., Zhang, W., Zhang, X., et al. (2023) An Artificial Bone Filling Material of Poly L-Lactic Acid/Collagen/Nano-Hydroxyapatite Microspheres: Preparation and Collagen Regulation on the Property. International Journal of Biological Macromolecules, 229, 35-50.
https://doi.org/10.1016/j.ijbiomac.2022.12.200

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133