全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

炎症细胞及乳酸在结直肠癌肝转移中的作用机制
The Role and Mechanism of Inflammatory Cells and Lactic Acid in Colorectal Cancer Liver Metastasis

DOI: 10.12677/acm.2025.151115, PP. 851-859

Keywords: 炎症细胞,乳酸,结直肠癌,肝转移
Inflammatory Cells
, Lactic Acid, Colorectal Cancer, Liver Metastasis

Full-Text   Cite this paper   Add to My Lib

Abstract:

结直肠癌(Colorectal cancer, CRC)是全球第三大最常见的恶性肿瘤,大约50%的患者在随访期间发生结直肠癌肝转移(Colorectal cancer liver metastasis, CRLM),肝转移是其最常见的远处转移部位;并且肝转移是结直肠癌患者死亡的主要原因。CRLM的管理最好通过多学科方法实现,诊断和治疗决策过程很复杂。为了优化患者的生存和生活质量,必须克服几个未解决的挑战。这些主要包括及时诊断和确定可靠的预后因素。早期识别结直肠癌肝转移的危险因素可能是降低肝转移发生率的有效策略。炎症细胞及乳酸在肿瘤微环境中发挥着重要作用,对肿瘤细胞转移机制至关重要。本文将探讨炎症细胞及乳酸在结直肠癌异时性肝转移中的作用,这是对手术后发生异时性肝转移的结直肠癌患者进行有效干预的前提,对改善患者生活质量、延长患者生命具有重要意义。
Colorectal cancer (CRC) is the third most common malignant tumor worldwide, and approximately 50% of patients develop colorectal cancer liver metastasis (CRLM) during follow-up, making it the most common distant metastatic site. Liver metastasis is the main cause of death in patients with CRC. The management of CRLM is best achieved through a multidisciplinary approach, and the process of diagnosis and treatment decision-making is complex. To optimize patient survival and quality of life, several unresolved challenges must be overcome. These include the timely diagnosis and the identification of reliable prognostic factors. Early identification of risk factors for CRLM may be an effective strategy to reduce the incidence of liver metastasis. Inflammatory cells and lactic acid play a significant role in the tumor microenvironment and are crucial for the metastatic mechanism of tumor cells. This paper will explore the role of inflammatory cells and lactic acid in the metachronous liver metastasis of colorectal cancer, which is a prerequisite for effective intervention in patients with metachronous liver metastasis of colorectal cancer after surgery, and has important significance for improving patient quality of life and extending patient life.

References

[1]  Bray, F., Laversanne, M., Sung, H., Ferlay, J., Siegel, R.L., Soerjomataram, I., et al. (2024) Global Cancer Statistics 2022: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA: A Cancer Journal for Clinicians, 74, 229-263.
https://doi.org/10.3322/caac.21834

[2]  郑荣寿, 陈茹, 韩冰峰, 等. 2022年中国恶性肿瘤流行情况分析[J]. 中华肿瘤杂志, 2024, 46(3): 221-231.
[3]  中国医师协会外科医师分会, 中华医学会外科分会胃肠外科学组, 中华医学会外科分会结直肠外科学组, 等. 中国结直肠癌肝转移诊断和综合治疗指南(V2023) [J]. 中华胃肠外科杂志, 2023, 26(1): 1-15.
[4]  Stewart, C.L., Warner, S., Ito, K., Raoof, M., Wu, G.X., Kessler, J., et al. (2018) Cytoreduction for Colorectal Metastases: Liver, Lung, Peritoneum, Lymph Nodes, Bone, Brain. When Does It Palliate, Prolong Survival, and Potentially Cure? Current Problems in Surgery, 55, 330-379.
https://doi.org/10.1067/j.cpsurg.2018.08.004

[5]  Wikman, H., Vessella, R. and Pantel, K. (2008) Cancer Micrometastasis and Tumour Dormancy. APMIS, 116, 754-770.
https://doi.org/10.1111/j.1600-0463.2008.01033.x

[6]  Ocana, A., Nieto-Jiménez, C., Pandiella, A. and Templeton, A.J. (2017) Neutrophils in Cancer: Prognostic Role and Therapeutic Strategies. Molecular Cancer, 16, Article No. 137.
https://doi.org/10.1186/s12943-017-0707-7

[7]  Bhat, A.A., Nisar, S., Singh, M., Ashraf, B., Masoodi, T., Prasad, C.P., et al. (2022) Cytokine‐ and Chemokine‐Induced Inflammatory Colorectal Tumor Microenvironment: Emerging Avenue for Targeted Therapy. Cancer Communications, 42, 689-715.
https://doi.org/10.1002/cac2.12295

[8]  Chen, A., Huang, H., Fang, S. and Hang, Q. (2024) ROS: A “Booster” for Chronic Inflammation and Tumor Metastasis. Biochimica et Biophysica Acta (BBA)-Reviews on Cancer, 1879, Article 189175.
https://doi.org/10.1016/j.bbcan.2024.189175

[9]  Huber, V., Camisaschi, C., Berzi, A., Ferro, S., Lugini, L., Triulzi, T., et al. (2017) Cancer Acidity: An Ultimate Frontier of Tumor Immune Escape and a Novel Target of Immunomodulation. Seminars in Cancer Biology, 43, 74-89.
https://doi.org/10.1016/j.semcancer.2017.03.001

[10]  Zhang, D., Tang, Z., Huang, H., Zhou, G., Cui, C., Weng, Y., et al. (2019) Metabolic Regulation of Gene Expression by Histone Lactylation. Nature, 574, 575-580.
https://doi.org/10.1038/s41586-019-1678-1

[11]  Choi, S.Y.C., Collins, C.C., Gout, P.W. and Wang, Y. (2013) Cancer‐Generated Lactic Acid: A Regulatory, Immunosuppressive Metabolite? The Journal of Pathology, 230, 350-355.
https://doi.org/10.1002/path.4218

[12]  Feichtinger, R.G. and Lang, R. (2019) Targeting L-Lactate Metabolism to Overcome Resistance to Immune Therapy of Melanoma and Other Tumor Entities. Journal of Oncology, 2019, Article 2084195.
https://doi.org/10.1155/2019/2084195

[13]  Chambers, A.F., Groom, A.C. and MacDonald, I.C. (2002) Dissemination and Growth of Cancer Cells in Metastatic Sites. Nature Reviews Cancer, 2, 563-572.
https://doi.org/10.1038/nrc865

[14]  Lake-Bakaar, G., Ahmed, M., Evenson, A., Bonder, A., Faintuch, S. and Sundaram, V. (2014) Management of Hepatocellular Carcinoma in Cirrhotic Patients with Portal Hypertension: Relevance of Hagen-Poiseuille’s Law. Liver Cancer, 3, 428-438.
https://doi.org/10.1159/000343871

[15]  Poisson, J., Lemoinne, S., Boulanger, C., Durand, F., Moreau, R., Valla, D., et al. (2017) Liver Sinusoidal Endothelial Cells: Physiology and Role in Liver Diseases. Journal of Hepatology, 66, 212-227.
https://doi.org/10.1016/j.jhep.2016.07.009

[16]  Zheng, M. and Tian, Z. (2019) Liver-Mediated Adaptive Immune Tolerance. Frontiers in Immunology, 10, Article 2525.
https://doi.org/10.3389/fimmu.2019.02525

[17]  Wang, Y., Zhong, X., He, X., Hu, Z., Huang, H., Chen, J., et al. (2023) Liver Metastasis from Colorectal Cancer: Pathogenetic Development, Immune Landscape of the Tumour Microenvironment and Therapeutic Approaches. Journal of Experimental & Clinical Cancer Research, 42, Article No. 177.
https://doi.org/10.1186/s13046-023-02729-7

[18]  Brodt, P. (2016) Role of the Microenvironment in Liver Metastasis: From Pre-To Prometastatic Niches. Clinical Cancer Research, 22, 5971-5982.
https://doi.org/10.1158/1078-0432.ccr-16-0460

[19]  Timmers, M., Vekemans, K., Vermijlen, D., Asosingh, K., Kuppen, P., Bouwens, L., et al. (2004) Interactions between Rat Colon Carcinoma Cells and Kupffer Cells during the Onset of Hepatic Metastasis. International Journal of Cancer, 112, 793-802.
https://doi.org/10.1002/ijc.20481

[20]  Piñeiro Fernández, J., Luddy, K.A., Harmon, C. and O’Farrelly, C. (2019) Hepatic Tumor Microenvironments and Effects on NK Cell Phenotype and Function. International Journal of Molecular Sciences, 20, Article 4131.
https://doi.org/10.3390/ijms20174131

[21]  Liu, X., Xu, J., Rosenthal, S., Zhang, L., McCubbin, R., Meshgin, N., et al. (2020) Identification of Lineage-Specific Transcription Factors That Prevent Activation of Hepatic Stellate Cells and Promote Fibrosis Resolution. Gastroenterology, 158, 1728-1744.e14.
https://doi.org/10.1053/j.gastro.2020.01.027

[22]  Lee, J., Ung, A., Kim, H., Lee, K., Cho, H., Bandaru, P., et al. (2021) Engineering Liver Microtissues to Study the Fusion of HepG2 with Mesenchymal Stem Cells and Invasive Potential of Fused Cells. Biofabrication, 14, Article 014104.
https://doi.org/10.1088/1758-5090/ac36de

[23]  Mueller, L., Goumas, F.A., Affeldt, M., Sandtner, S., Gehling, U.M., Brilloff, S., et al. (2007) Stromal Fibroblasts in Colorectal Liver Metastases Originate from Resident Fibroblasts and Generate an Inflammatory Microenvironment. The American Journal of Pathology, 171, 1608-1618.
https://doi.org/10.2353/ajpath.2007.060661

[24]  Taura, K., De Minicis, S., Seki, E., Hatano, E., Iwaisako, K., Osterreicher, C.H., et al. (2008) Hepatic Stellate Cells Secrete Angiopoietin 1 That Induces Angiogenesis in Liver Fibrosis. Gastroenterology, 135, 1729-1738.
https://doi.org/10.1053/j.gastro.2008.07.065

[25]  Milette, S., Sicklick, J.K., Lowy, A.M. and Brodt, P. (2017) Molecular Pathways: Targeting the Microenvironment of Liver Metastases. Clinical Cancer Research, 23, 6390-6399.
https://doi.org/10.1158/1078-0432.ccr-15-1636

[26]  Goodla, L. and Xue, X. (2022) The Role of Inflammatory Mediators in Colorectal Cancer Hepatic Metastasis. Cells, 11, Article 2313.
https://doi.org/10.3390/cells11152313

[27]  Zhou, S., Zhou, Z., Hu, Z., Huang, X., Wang, Z., Chen, E., et al. (2016) Tumor-Associated Neutrophils Recruit Macrophages and T-Regulatory Cells to Promote Progression of Hepatocellular Carcinoma and Resistance to Sorafenib. Gastroenterology, 150, 1646-1658.e17.
https://doi.org/10.1053/j.gastro.2016.02.040

[28]  Zhu, K., Li, P., Mo, Y., Wang, J., Jiang, X., Ge, J., et al. (2020) Neutrophils: Accomplices in Metastasis. Cancer Letters, 492, 11-20.
https://doi.org/10.1016/j.canlet.2020.07.028

[29]  Yang, L., Liu, L., Zhang, R., Hong, J., Wang, Y., Wang, J., et al. (2020) IL-8 Mediates a Positive Loop Connecting Increased Neutrophil Extracellular Traps (Nets) and Colorectal Cancer Liver Metastasis. Journal of Cancer, 11, 4384-4396.
https://doi.org/10.7150/jca.44215

[30]  Guerriero, J.L. (2019) Macrophages: Their Untold Story in T Cell Activation and Function. International Review of Cell and Molecular Biology, 342, 73-93.
https://doi.org/10.1016/bs.ircmb.2018.07.001

[31]  Zhang, Y., Han, G., Gu, J., Chen, Z. and Wu, J. (2024) Role of Tumor-Associated Macrophages in Hepatocellular Carcinoma: Impact, Mechanism, and Therapy. Frontiers in Immunology, 15, Article 1429812.
https://doi.org/10.3389/fimmu.2024.1429812

[32]  Komohara, Y., Fujiwara, Y., Ohnishi, K. and Takeya, M. (2016) Tumor-Associated Macrophages: Potential Therapeutic Targets for Anti-Cancer Therapy. Advanced Drug Delivery Reviews, 99, 180-185.
https://doi.org/10.1016/j.addr.2015.11.009

[33]  Huang, Y., Snuderl, M. and Jain, R.K. (2011) Polarization of Tumor-Associated Macrophages: A Novel Strategy for Vascular Normalization and Antitumor Immunity. Cancer Cell, 19, 1-2.
https://doi.org/10.1016/j.ccr.2011.01.005

[34]  Allavena, P., Sica, A., Solinas, G., Porta, C. and Mantovani, A. (2008) The Inflammatory Micro-Environment in Tumor Progression: The Role of Tumor-Associated Macrophages. Critical Reviews in Oncology/Hematology, 66, 1-9.
https://doi.org/10.1016/j.critrevonc.2007.07.004

[35]  Boutilier, A.J. and Elsawa, S.F. (2021) Macrophage Polarization States in the Tumor Microenvironment. International Journal of Molecular Sciences, 22, Article 6995.
https://doi.org/10.3390/ijms22136995

[36]  Huang, C., Ou, R., Chen, X., Zhang, Y., Li, J., Liang, Y., et al. (2021) Tumor Cell-Derived SPON2 Promotes M2-Polarized Tumor-Associated Macrophage Infiltration and Cancer Progression by Activating PYK2 in CRC. Journal of Experimental & Clinical Cancer Research, 40, Article No. 304.
https://doi.org/10.1186/s13046-021-02108-0

[37]  Grossman, J.G., Nywening, T.M., Belt, B.A., Panni, R.Z., Krasnick, B.A., DeNardo, D.G., et al. (2018) Recruitment of CCR2+ Tumor Associated Macrophage to Sites of Liver Metastasis Confers a Poor Prognosis in Human Colorectal Cancer. OncoImmunology, 7, e1470729.
https://doi.org/10.1080/2162402x.2018.1470729

[38]  Donadon, M., Torzilli, G., Cortese, N., Soldani, C., Di Tommaso, L., Franceschini, B., et al. (2020) Macrophage Morphology Correlates with Single-Cell Diversity and Prognosis in Colorectal Liver Metastasis. Journal of Experimental Medicine, 217, e20191847.
https://doi.org/10.1084/jem.20191847

[39]  Tosolini, M., Kirilovsky, A., Mlecnik, B., Fredriksen, T., Mauger, S., Bindea, G., et al. (2011) Clinical Impact of Different Classes of Infiltrating T Cytotoxic and Helper Cells (Th1, Th2, Treg, Th17) in Patients with Colorectal Cancer. Cancer Research, 71, 1263-1271.
https://doi.org/10.1158/0008-5472.can-10-2907

[40]  Koyama, S. and Nishikawa, H. (2021) Mechanisms of Regulatory T Cell Infiltration in Tumors: Implications for Innovative Immune Precision Therapies. Journal for ImmunoTherapy of Cancer, 9, e002591.
https://doi.org/10.1136/jitc-2021-002591

[41]  Qureshi, O.S., Zheng, Y., Nakamura, K., Attridge, K., Manzotti, C., Schmidt, E.M., et al. (2011) Trans-Endocytosis of CD80 and CD86: A Molecular Basis for the Cell-Extrinsic Function of CTLA-4. Science, 332, 600-603.
https://doi.org/10.1126/science.1202947

[42]  Setoguchi, R., Hori, S., Takahashi, T. and Sakaguchi, S. (2005) Homeostatic Maintenance of Natural Foxp3+ CD25+ CD4+ Regulatory T Cells by Interleukin (IL)-2 and Induction of Autoimmune Disease by IL-2 Neutralization. The Journal of Experimental Medicine, 201, 723-735.
https://doi.org/10.1084/jem.20041982

[43]  Masuda, K., Kornberg, A., Miller, J., Lin, S., Suek, N., Botella, T., et al. (2022) Multiplexed Single-Cell Analysis Reveals Prognostic and Nonprognostic T Cell Types in Human Colorectal Cancer. JCI Insight, 7, e154646.
https://doi.org/10.1172/jci.insight.154646

[44]  Phanthunane, C., Wijers, R., De Herdt, M., Koljenović, S., Sleijfer, S., Baatenburg de Jong, R., et al. (2022) Intratumoral Niches of B Cells and Follicular Helper T Cells, and the Absence of Regulatory T Cells, Associate with Longer Survival in Early-Stage Oral Tongue Cancer Patients. Cancers, 14, Article 4298.
https://doi.org/10.3390/cancers14174298

[45]  Liu, H., Li, Z., Han, X., Li, Z., Zhao, Y., Liu, F., et al. (2023) The Prognostic Impact of Tumor-Infiltrating B Lymphocytes in Patients with Solid Malignancies: A Systematic Review and Meta-Analysis. Critical Reviews in Oncology/Hematology, 181, Article 103893.
https://doi.org/10.1016/j.critrevonc.2022.103893

[46]  Anderson, N.M. and Simon, M.C. (2020) The Tumor Microenvironment. Current Biology, 30, R921-R925.
https://doi.org/10.1016/j.cub.2020.06.081

[47]  Fridman, W.H., Meylan, M., Petitprez, F., Sun, C., Italiano, A. and Sautès-Fridman, C. (2022) B Cells and Tertiary Lymphoid Structures as Determinants of Tumour Immune Contexture and Clinical Outcome. Nature Reviews Clinical Oncology, 19, 441-457.
https://doi.org/10.1038/s41571-022-00619-z

[48]  Salmon, H., Idoyaga, J., Rahman, A., Leboeuf, M., Remark, R., Jordan, S., et al. (2016) Expansion and Activation of CD103+ Dendritic Cell Progenitors at the Tumor Site Enhances Tumor Responses to Therapeutic PD-L1 and BRAF Inhibition. Immunity, 44, 924-938.
https://doi.org/10.1016/j.immuni.2016.03.012

[49]  Merad, M., Sathe, P., Helft, J., Miller, J. and Mortha, A. (2013) The Dendritic Cell Lineage: Ontogeny and Function of Dendritic Cells and Their Subsets in the Steady State and the Inflamed Setting. Annual Review of Immunology, 31, 563-604.
https://doi.org/10.1146/annurev-immunol-020711-074950

[50]  Xia, S., Guo, Z., Xu, X., Yi, H., Wang, Q. and Cao, X. (2008) Hepatic Microenvironment Programs Hematopoietic Progenitor Differentiation into Regulatory Dendritic Cells, Maintaining Liver Tolerance. Blood, 112, 3175-3185.
https://doi.org/10.1182/blood-2008-05-159921

[51]  Liu, Y., Zhang, Q., Xing, B., Luo, N., Gao, R., Yu, K., et al. (2022) Immune Phenotypic Linkage between Colorectal Cancer and Liver Metastasis. Cancer Cell, 40, 424-437.e5.
https://doi.org/10.1016/j.ccell.2022.02.013

[52]  Palucka, K. and Banchereau, J. (2012) Cancer Immunotherapy via Dendritic Cells. Nature Reviews Cancer, 12, 265-277.
https://doi.org/10.1038/nrc3258

[53]  Vander Heiden, M.G., Cantley, L.C. and Thompson, C.B. (2009) Understanding the Warburg Effect: The Metabolic Requirements of Cell Proliferation. Science, 324, 1029-1033.
https://doi.org/10.1126/science.1160809

[54]  Nieman, K.M., Kenny, H.A., Penicka, C.V., Ladanyi, A., Buell-Gutbrod, R., Zillhardt, M.R., et al. (2011) Adipocytes Promote Ovarian Cancer Metastasis and Provide Energy for Rapid Tumor Growth. Nature Medicine, 17, 1498-1503.
https://doi.org/10.1038/nm.2492

[55]  Weinhouse, S. (1956) On Respiratory Impairment in Cancer Cells. Science, 124, 267-269.
https://doi.org/10.1126/science.124.3215.267

[56]  Warburg, O., Wind, F. and Negelein, E. (1927) The Metabolism of Tumors in the Body. Journal of General Physiology, 8, 519-530.
https://doi.org/10.1085/jgp.8.6.519

[57]  Wang, J.X., Choi, S.Y.C., Niu, X., Kang, N., Xue, H., Killam, J., et al. (2020) Lactic Acid and an Acidic Tumor Microenvironment Suppress Anticancer Immunity. International Journal of Molecular Sciences, 21, Article 8363.
https://doi.org/10.3390/ijms21218363

[58]  Pucino, V., Certo, M., Bulusu, V., Cucchi, D., Goldmann, K., Pontarini, E., et al. (2019) Lactate Buildup at the Site of Chronic Inflammation Promotes Disease by Inducing CD4+ T Cell Metabolic Rewiring. Cell Metabolism, 30, 1055-1074.e8.
https://doi.org/10.1016/j.cmet.2019.10.004

[59]  Tanaka, A. and Sakaguchi, S. (2019) Targeting Treg Cells in Cancer Immunotherapy. European Journal of Immunology, 49, 1140-1146.
https://doi.org/10.1002/eji.201847659

[60]  Sharma, M.D., Shinde, R., McGaha, T.L., Huang, L., Holmgaard, R.B., Wolchok, J.D., et al. (2015) The PTEN Pathway in Tregs Is a Critical Driver of the Suppressive Tumor Microenvironment. Science Advances, 1, e1500845.
https://doi.org/10.1126/sciadv.1500845

[61]  Nakamura, T., Shima, T., Saeki, A., Hidaka, T., Nakashima, A., Takikawa, O., et al. (2007) Expression of Indoleamine 2, 3‐Dioxygenase and the Recruitment of Foxp3‐Expressing Regulatory T Cells in the Development and Progression of Uterine Cervical Cancer. Cancer Science, 98, 874-881.
https://doi.org/10.1111/j.1349-7006.2007.00470.x

[62]  Hinshaw, D.C. and Shevde, L.A. (2019) The Tumor Microenvironment Innately Modulates Cancer Progression. Cancer Research, 79, 4557-4566.
https://doi.org/10.1158/0008-5472.can-18-3962

[63]  Liu, H., Pan, M., Liu, M., Zeng, L., Li, Y., Huang, Z., et al. (2024) Lactate: A Rising Star in Tumors and Inflammation. Frontiers in Immunology, 15, Article 1496390.
https://doi.org/10.3389/fimmu.2024.1496390

[64]  Gottfried, E., Kunz-Schughart, L.A., Ebner, S., Mueller-Klieser, W., Hoves, S., Andreesen, R., et al. (2006) Tumor-derived Lactic Acid Modulates Dendritic Cell Activation and Antigen Expression. Blood, 107, 2013-2021.
https://doi.org/10.1182/blood-2005-05-1795

[65]  Wculek, S.K., Cueto, F.J., Mujal, A.M., Melero, I., Krummel, M.F. and Sancho, D. (2019) Dendritic Cells in Cancer Immunology and Immunotherapy. Nature Reviews Immunology, 20, 7-24.
https://doi.org/10.1038/s41577-019-0210-z

[66]  Cao, S., Liu, P., Zhu, H., Gong, H., Yao, J., Sun, Y., et al. (2015) Extracellular Acidification Acts as a Key Modulator of Neutrophil Apoptosis and Functions. PLOS ONE, 10, e0137221.
https://doi.org/10.1371/journal.pone.0137221

[67]  Díaz, F.E., Dantas, E., Cabrera, M., Benítez, C.A., Delpino, M.V., Duette, G., et al. (2016) Fever-Range Hyperthermia Improves the Anti-Apoptotic Effect Induced by Low Ph on Human Neutrophils Promoting a Proangiogenic Profile. Cell Death & Disease, 7, e2437.
https://doi.org/10.1038/cddis.2016.337

[68]  Brand, A., Singer, K., Koehl, G.E., Kolitzus, M., Schoenhammer, G., Thiel, A., et al. (2016) LDHA-Associated Lactic Acid Production Blunts Tumor Immunosurveillance by T and NK Cells. Cell Metabolism, 24, 657-671.
https://doi.org/10.1016/j.cmet.2016.08.011

[69]  Mathew, M., Nguyen, N., Bhutia, Y., Sivaprakasam, S. and Ganapathy, V. (2024) Metabolic Signature of Warburg Effect in Cancer: An Effective and Obligatory Interplay between Nutrient Transporters and Catabolic/Anabolic Pathways to Promote Tumor Growth. Cancers, 16, Article 504.
https://doi.org/10.3390/cancers16030504

[70]  Wagner, W., Kania, K.D., Blauz, A. and Ciszewski, W.M. (2017) The Lactate Receptor (HCAR1/GPR81) Contributes to Doxorubicin Chemoresistance via ABCB1 Transporter Up-Regulation in Human Cervical Cancer HeLa Cells. Journal of Physiology and Pharmacology, 68, 555-564.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133