|
残余胆固醇对心血管疾病的研究进展
|
Abstract:
心血管疾病(CVD)是全球公共卫生领域最重要的负担之一,是威胁全球生命安全的一个重要的危险因素,也是造成全球疾病死亡的主要原因。众多研究表明,残余胆固醇(RC)是独立于低密度脂蛋白胆固醇(LDL-C)外,导致心血管疾病的独立危险因素。本文将系统探讨残余胆固醇致心血管疾病的研究现状,为未来心血管疾病患者的自我管理和临床实践提供指导。
Cardiovascular disease (CVD) is one of the most important burdens in the global public health field, a significant risk factor threatening global life safety, and a major cause of global disease deaths. Numerous studies have shown that residual cholesterol (RC) is an independent risk factor for cardiovascular disease and separating from low-density lipoprotein cholesterol (LDL-C). This article will systematically explore the current research status of residual cholesterol induced cardiovascular disease, providing guidance for self-management and clinical practice of cardiovascular disease patients in the future.
[1] | Nordestgaard, B.G. and Varbo, A. (2014) Triglycerides and Cardiovascular Disease. The Lancet, 384, 626-635. https://doi.org/10.1016/s0140-6736(14)61177-6 |
[2] | Nordestgaard, B.G. (2016) Triglyceride-Rich Lipoproteins and Atherosclerotic Cardiovascular Disease: New Insights from Epidemiology, Genetics, and Biology. Circulation Research, 118, 547-563. https://doi.org/10.1161/circresaha.115.306249 |
[3] | Duran, E.K. and Pradhan, A.D. (2020) Triglyceride-Rich Lipoprotein Remnants and Cardiovascular Disease. Clinical Chemistry, 67, 183-196. https://doi.org/10.1093/clinchem/hvaa296 |
[4] | Ginsberg, H.N., Packard, C.J., Chapman, M.J., Borén, J., Aguilar-Salinas, C.A., Averna, M., et al. (2021) Triglyceride-rich Lipoproteins and Their Remnants: Metabolic Insights, Role in Atherosclerotic Cardiovascular Disease, and Emerging Therapeutic Strategies—A Consensus Statement from the European Atherosclerosis Society. European Heart Journal, 42, 4791-4806. https://doi.org/10.1093/eurheartj/ehab551 |
[5] | Chait, A., Ginsberg, H.N., Vaisar, T., Heinecke, J.W., Goldberg, I.J. and Bornfeldt, K.E. (2020) Remnants of the Triglyceride-Rich Lipoproteins, Diabetes, and Cardiovascular Disease. Diabetes, 69, 508-516. https://doi.org/10.2337/dbi19-0007 |
[6] | Miller, Y.I., Choi, S., Fang, L. and Tsimikas, S. (2010) Lipoprotein Modification and Macrophage Uptake: Role of Pathologic Cholesterol Transport in Atherogenesis. In: Harris, J., Ed., Cholesterol Binding and Cholesterol Transport Proteins: Subcellular Biochemistry, Springer, 229-251. https://doi.org/10.1007/978-90-481-8622-8_8 |
[7] | Olufadi, R. and Byrne, C.D. (2006) Effects of VLDL and Remnant Particles on Platelets. Pathophysiology of Haemostasis and Thrombosis, 35, 281-291. https://doi.org/10.1159/000093221 |
[8] | Varbo, A. and Nordestgaard, B.G. (2021) Directly Measured Vs. Calculated Remnant Cholesterol Identifies Additional Overlooked Individuals in the General Population at Higher Risk of Myocardial Infarction. European Heart Journal, 42, 4833-4843. https://doi.org/10.1093/eurheartj/ehab293 |
[9] | Cao, Y., Zhang, H., Jin, J., Liu, H., Zhang, Y., Gao, Y., et al. (2020) The Longitudinal Association of Remnant Cholesterol with Cardiovascular Outcomes in Patients with Diabetes and Pre-Diabetes. Cardiovascular Diabetology, 19, Article No. 104. https://doi.org/10.1186/s12933-020-01076-7 |
[10] | Martin, S.S., Blaha, M.J., Elshazly, M.B., Brinton, E.A., Toth, P.P., McEvoy, J.W., et al. (2013) Friedewald-Estimated versus Directly Measured Low-Density Lipoprotein Cholesterol and Treatment Implications. Journal of the American College of Cardiology, 62, 732-739. https://doi.org/10.1016/j.jacc.2013.01.079 |
[11] | Martin, S.S., Blaha, M.J., Elshazly, M.B., Toth, P.P., Kwiterovich, P.O., Blumenthal, R.S., et al. (2013) Comparison of a Novel Method vs the Friedewald Equation for Estimating Low-Density Lipoprotein Cholesterol Levels from the Standard Lipid Profile. JAMA, 310, 2061-2068. https://doi.org/10.1001/jama.2013.280532 |
[12] | Jepsen, A.K., Langsted, A., Varbo, A., Bang, L.E., Kamstrup, P.R. and Nordestgaard, B.G. (2016) Increased Remnant Cholesterol Explains Part of Residual Risk of All-Cause Mortality in 5414 Patients with Ischemic Heart Disease. Clinical Chemistry, 62, 593-604. https://doi.org/10.1373/clinchem.2015.253757 |
[13] | Masuda, D. and Yamashita, S. (2017) Postprandial Hyperlipidemia and Remnant Lipoproteins. Journal of Atherosclerosis and Thrombosis, 24, 95-109. https://doi.org/10.5551/jat.rv16003 |
[14] | Lupton, J.R., Faridi, K.F., Martin, S.S., Sharma, S., Kulkarni, K., Jones, S.R., et al. (2016) Deficient Serum 25-Hydroxyvitamin D Is Associated with an Atherogenic Lipid Profile: The Very Large Database of Lipids (VLDL-3) Study. Journal of Clinical Lipidology, 10, 72-81.e1. https://doi.org/10.1016/j.jacl.2015.09.006 |
[15] | Jepsen, A.K., Langsted, A., Varbo, A., Bang, L.E., Kamstrup, P.R. and Nordestgaard, B.G. (2016) Increased Remnant Cholesterol Explains Part of Residual Risk of All-Cause Mortality in 5414 Patients with Ischemic Heart Disease. Clinical Chemistry, 62, 593-604. https://doi.org/10.1373/clinchem.2015.253757 |
[16] | Navarese, E.P., Vine, D., Proctor, S., Grzelakowska, K., Berti, S., Kubica, J., et al. (2023) Independent Causal Effect of Remnant Cholesterol on Atherosclerotic Cardiovascular Outcomes: A Mendelian Randomization Study. Arteriosclerosis, Thrombosis, and Vascular Biology, 43, e373-e380. https://doi.org/10.1161/atvbaha.123.319297 |
[17] | Han, M.H., et al. (2024) Discordant High Remnant Cholesterol with LDL-C Increases the Risk of Stroke: A Chinese Prospective Cohort Study. Stroke, 55, 2066-2074. |
[18] | Elshazly, M.B., Mani, P., Nissen, S., Brennan, D.M., Clark, D., Martin, S., et al. (2019) Remnant Cholesterol, Coronary Atheroma Progression and Clinical Events in Statin-Treated Patients with Coronary Artery Disease. European Journal of Preventive Cardiology, 27, 1091-1100. https://doi.org/10.1177/2047487319887578 |
[19] | Hinton, J., Mariathas, M.N., Gabara, L., Allan, R., Nicholas, Z., Kwok, C.S., et al. (2023) Association between Troponin Level and Medium-Term Mortality in 20 000 Hospital Patients. Heart, 109, 1772-1777. https://doi.org/10.1136/heartjnl-2023-322463 |
[20] | Castañer, O., Pintó, X., Subirana, I., Amor, A.J., Ros, E., Hernáez, Á., et al. (2020) Remnant Cholesterol, Not LDL Cholesterol, Is Associated with Incident Cardiovascular Disease. Journal of the American College of Cardiology, 76, 2712-2724. https://doi.org/10.1016/j.jacc.2020.10.008 |
[21] | Xiao, Z.W., et al. (2023) Cumulative Remnant Cholesterol Predicts Cardiovascular Outcomes in Elderly Patients with Atherosclerotic Cardiovascular Disease. European Journal of Preventive Cardiology, 30, 1924-1934. |
[22] | Chapman, M.J., Ginsberg, H.N., Amarenco, P., Andreotti, F., Borén, J., Catapano, A.L., et al. (2011) Triglyceride-Rich Lipoproteins and High-Density Lipoprotein Cholesterol in Patients at High Risk of Cardiovascular Disease: Evidence and Guidance for Management. European Heart Journal, 32, 1345-1361. https://doi.org/10.1093/eurheartj/ehr112 |
[23] | Wang, X., Wu, X., Lu, Y., Sun, Y., Zhu, H., Liang, J., et al. (2017) Potential Involvement of Mir-30e-3p in Myocardial Injury Induced by Coronary Microembolization via Autophagy Activation. Cellular Physiology and Biochemistry, 44, 1995-2004. https://doi.org/10.1159/000485905 |
[24] | Würtz, P., Wang, Q., Soininen, P., Kangas, A.J., Fatemifar, G., Tynkkynen, T., et al. (2016) Metabolomic Profiling of Statin Use and Genetic Inhibition of HMG-COA Reductase. Journal of the American College of Cardiology, 67, 1200-1210. https://doi.org/10.1016/j.jacc.2015.12.060 |
[25] | Kofink, D., Eppinga, R.N., van Gilst, W.H., Bakker, S.J.L., Dullaart, R.P.F., van der Harst, P., et al. (2017) Statin Effects on Metabolic Profiles: Data from the PREVEND IT (Prevention of Renal and Vascular End-Stage Disease Intervention Trial). Circulation: Cardiovascular Genetics, 10, e001759. https://doi.org/10.1161/circgenetics.117.001759 |
[26] | Miller, P.E., Martin, S.S., Joshi, P.H., Jones, S.R., Massaro, J.M., D’Agostino, R.B., et al. (2016) Pitavastatin 4 Mg Provides Significantly Greater Reduction in Remnant Lipoprotein Cholesterol Compared with Pravastatin 40 Mg: Results from the Short-Term Phase IV PREVAIL US Trial in Patients with Primary Hyperlipidemia or Mixed Dyslipidemia. Clinical Therapeutics, 38, 603-609. https://doi.org/10.1016/j.clinthera.2016.02.001 |
[27] | Tsunoda, F., Asztalos, I.B., Horvath, K.V., Steiner, G., Schaefer, E.J. and Asztalos, B.F. (2016) Fenofibrate, HDL, and Cardiovascular Disease in Type-2 Diabetes: The DAIS Trial. Atherosclerosis, 247, 35-39. https://doi.org/10.1016/j.atherosclerosis.2016.01.028 |
[28] | Bhatt, D.L., Steg, P.G., Miller, M., Brinton, E.A., Jacobson, T.A., Ketchum, S.B., et al. (2019) Cardiovascular Risk Reduction with Icosapent Ethyl for Hypertriglyceridemia. New England Journal of Medicine, 380, 11-22. https://doi.org/10.1056/nejmoa1812792 |
[29] | Wang, J., Feng, Q., Liang, D. and Shi, J. (2021) miRNA-26a Inhibits Myocardial Infarction-Induced Apoptosis by Targeting PTEN via JAK/STAT Pathways. Cells & Development, 165, Article ID: 203661. https://doi.org/10.1016/j.cdev.2021.203661 |
[30] | 曹岩, 颜培实. 残余胆固醇与动脉粥样硬化性心血管疾病[J]. 心血管病学进展, 2021, 42(10): 920-923. |
[31] | Paik, J. and Duggan, S. (2019) Volanesorsen: First Global Approval. Drugs, 79, 1349-1354. https://doi.org/10.1007/s40265-019-01168-z |
[32] | Prohaska, T.A., Alexander, V.J., Karwatowska-Prokopczuk, E., Tami, J., Xia, S., Witztum, J.L., et al. (2023) APOC3 Inhibition with Volanesorsen Reduces Hepatic Steatosis in Patients with Severe Hypertriglyceridemia. Journal of Clinical Lipidology, 17, 406-411. https://doi.org/10.1016/j.jacl.2023.04.007 |
[33] | 王新鑫, 董彬. 残余胆固醇与动脉粥样硬化性心血管疾病风险的研究[J]. 心脑血管病防治, 2024, 24(3): 36-39. |