全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

脾酪氨酸激酶在类风湿关节炎中作用机制的研究进展
The Research Progress on the Mechanism of Action of Spleen Tyrosine Kinases in Rheumatoid Arthritis

DOI: 10.12677/hjbm.2025.151016, PP. 146-151

Keywords: 脾酪氨酸激酶,类风湿关节炎,免疫细胞
Spleen Tyrosine Kinase (SYK)
, Rheumatoid Arthritis (RA), Immune Cells

Full-Text   Cite this paper   Add to My Lib

Abstract:

类风湿关节炎(rheumatoid arthritis, RA)是一种以关节滑膜炎症为显著特征的慢性自身免疫系统疾病。其发病复杂且尚未完全阐明。据研究报道,RA越影响全球1%的人群,且发病率呈逐渐上升趋势。但近年来的研究发现脾酪氨酸激酶(Spleen tyrosine kinase, SYK)在RA的发生和发展中起到了关键作用。SYK是一种细胞质非受体型蛋白酪氨酸激酶,广泛存在于多种免疫细胞中,尤其在B细胞、破骨细胞、中性粒细胞和巨噬细胞等免疫细胞中具有重要的生物学功能。因此,本文综述了脾酪氨酸激酶在RA中的研究进展,概述其与RA紧密相关的免疫细胞的相互作用,旨在为探究其在RA发病机制中的作用和研发抗RA靶向药物等提供思路和依据。
Rheumatoid arthritis (RA) is a chronic autoimmune disease characterized by inflammation of the synovial membrane in the joints, with a complex and yet not fully understood pathogenesis. It is reported that approximately 1% of the global population is affected by RA, and its incidence has been gradually increasing in recent years. Recent studies have highlighted the crucial role of spleen tyrosine kinase (SYK) in the pathogenesis and progression of RA. SYK is a cytoplasmic, non-receptor protein tyrosine kinase, widely expressed in various immune cells, particularly in B cells, osteoclasts, neutrophils, and macrophages, where it plays key biological roles. Therefore, this review summarizes the research progress of SYK in RA, focusing on its interactions with immune cells closely associated with RA. The aim is to provide insights into the role of SYK in the pathogenesis of RA and to support the development of targeted therapies for RA.

References

[1]  Mócsai, A., Ruland, J. and Tybulewicz, V.L.J. (2010) The SYK Tyrosine Kinase: A Crucial Player in Diverse Biological Functions. Nature Reviews Immunology, 10, 387-402.
https://doi.org/10.1038/nri2765
[2]  吴晶艺, 陆欣辰, 陈广洁. Notch信号通路在类风湿关节炎发病机制中的研究进展[J]. 现代免疫学, 2023, 43(2): 144-149.
[3]  Wang, L., Aschenbrenner, D., Zeng, Z., Cao, X., Mayr, D., Mehta, M., et al. (2021) Gain-of-Function Variants in SYK Cause Immune Dysregulation and Systemic Inflammation in Humans and Mice. Nature Genetics, 53, 500-510.
https://doi.org/10.1038/s41588-021-00803-4
[4]  Bartaula-Brevik, S., Lindstad Brattås, M.K., Tvedt, T.H.A., Reikvam, H. and Bruserud, Ø. (2018) Splenic Tyrosine Kinase (SYK) Inhibitors and Their Possible Use in Acute Myeloid Leukemia. Expert Opinion on Investigational Drugs, 27, 377-387.
https://doi.org/10.1080/13543784.2018.1459562
[5]  Hobbs, H.T., Shah, N.H., Badroos, J.M., Gee, C.L., Marqusee, S. and Kuriyan, J. (2021) Differences in the Dynamics of the Tandem‐SH2 Modules of the SYK and ZAP‐70 Tyrosine Kinases. Protein Science, 30, 2373-2384.
https://doi.org/10.1002/pro.4199
[6]  范露, 崔兵兵, 陆涛, 等. 小分子脾酪氨酸激酶抑制剂临床研究进展[J]. 药学进展, 2021, 45(1): 44-54.
[7]  Singh, R., Masuda, E.S. and Payan, D.G. (2012) Discovery and Development of Spleen Tyrosine Kinase (SYK) Inhibitors. Journal of Medicinal Chemistry, 55, 3614-3643.
https://doi.org/10.1021/jm201271b
[8]  Zarrin, A.A., Bao, K., Lupardus, P. and Vucic, D. (2020) Kinase Inhibition in Autoimmunity and Inflammation. Nature Reviews Drug Discovery, 20, 39-63.
https://doi.org/10.1038/s41573-020-0082-8
[9]  Arneson, L.C., Carroll, K.J. and Ruderman, E.M. (2021) Bruton’s Tyrosine Kinase Inhibition for the Treatment of Rheumatoid Arthritis. ImmunoTargets and Therapy, 10, 333-342.
https://doi.org/10.2147/itt.s288550
[10]  Zhang, Y., Yu, Z., Xiong, W., Liu, X., Liu, H., Cui, R., et al. (2020) TOSO Interacts with SYK and Enhances BCR Pathway Activation in Chronic Lymphocytic Leukemia. Chinese Medical Journal, 133, 2090-2097.
https://doi.org/10.1097/cm9.0000000000000999
[11]  Corneth, O.B.J., Klein Wolterink, R.G.J. and Hendriks, R.W. (2015) BTK Signaling in B Cell Differentiation and Autoimmunity. In: Current Topics in Microbiology and Immunology, Springer International Publishing, 67-105.
https://doi.org/10.1007/82_2015_478
[12]  Iwata, S., Nakayamada, S., Fukuyo, S., Kubo, S., Yunoue, N., Wang, S., et al. (2014) Activation of Syk in Peripheral Blood B Cells in Patients with Rheumatoid Arthritis: A Potential Target for Abatacept Therapy. Arthritis & Rheumatology, 67, 63-73.
https://doi.org/10.1002/art.38895
[13]  Ding, Q., Hu, W., Wang, R., Yang, Q., Zhu, M., Li, M., et al. (2023) Signaling Pathways in Rheumatoid Arthritis: Implications for Targeted Therapy. Signal Transduction and Targeted Therapy, 8, Article No. 68.
https://doi.org/10.1038/s41392-023-01331-9
[14]  Cecchi, I., Arias de la Rosa, I., Menegatti, E., Roccatello, D., Collantes-Estevez, E., Lopez-Pedrera, C., et al. (2018) Neutrophils: Novel Key Players in Rheumatoid Arthritis. Current and Future Therapeutic Targets. Autoimmunity Reviews, 17, 1138-1149.
https://doi.org/10.1016/j.autrev.2018.06.006
[15]  Roth, S. and Ruland, J. (2013) Caspase Recruitment Domain-Containing Protein 9 Signaling in Innate Immunity and Inflammation. Trends in Immunology, 34, 243-250.
https://doi.org/10.1016/j.it.2013.02.006
[16]  Németh, T., Futosi, K., Sitaru, C., Ruland, J. and Mócsai, A. (2016) Neutrophil-Specific Deletion of the CARD9 Gene Expression Regulator Suppresses Autoantibody-Induced Inflammation in Vivo. Nature Communications, 7, Article No. 11004.
https://doi.org/10.1038/ncomms11004
[17]  Ji, H., Ohmura, K., Mahmood, U., Lee, D.M., Hofhuis, F.M.A., Boackle, S.A., et al. (2002) Arthritis Critically Dependent on Innate Immune System Players. Immunity, 16, 157-168.
https://doi.org/10.1016/s1074-7613(02)00275-3
[18]  Wipke, B.T. and Allen, P.M. (2001) Essential Role of Neutrophils in the Initiation and Progression of a Murine Model of Rheumatoid Arthritis. The Journal of Immunology, 167, 1601-1608.
https://doi.org/10.4049/jimmunol.167.3.1601
[19]  Németh, T., Futosi, K., Szilveszter, K., Vilinovszki, O., Kiss-Pápai, L. and Mócsai, A. (2018) Lineage-Specific Analysis of Syk Function in Autoantibody-Induced Arthritis. Frontiers in Immunology, 9, Article No. 555.
https://doi.org/10.3389/fimmu.2018.00555
[20]  Jeon, J., Park, B., Jung, J., Jang, Y., Shin, E. and Park, Y.W. (2013) The Soluble Form of the Cellular Prion Protein Enhances Phagocytic Activity and Cytokine Production by Human Monocytes via Activation of ERK and NF-κB. Immune Network, 13, 148-156.
https://doi.org/10.4110/in.2013.13.4.148
[21]  Lee, J., Kim, N.H., Kim, J., Park, J., Shin, S., Kwon, Y., et al. (2013) Aromadendrin Inhibits Lipopolysaccharide-Induced Nuclear Translocation of NF-κB and Phosphorylation of JNK in RAW264.7 Macrophage Cells. Biomolecules and Therapeutics, 21, 216-221.
https://doi.org/10.4062/biomolther.2013.023
[22]  Yi, Y.S., Son, Y.J., Ryou, C., Sung, G.H., Kim, J.H. and Cho, J.Y. (2014) Functional Roles of Syk in Macrophage-Mediated Inflammatory Responses. Mediators of Inflammation, 2014, Article ID: 270302.
[23]  Chui, C., Wong, R., Cheng, G., Lau, F., Kok, S., Cheng, C., et al. (2006) Antiproliferative Ability of a Combination Regimen of Crocodile Egg Extract, Wild Radix Ginseng and Natural Ganoderma Lucidum on Acute Myelogenous Leukemia. Oncology Reports, 16, 1313-1316.
https://doi.org/10.3892/or.16.6.1313
[24]  Ozaki, N., Suzuki, S., Ishida, M., Harada, Y., Tanaka, K., Sato, Y., et al. (2012) Syk-Dependent Signaling Pathways in Neutrophils and Macrophages Are Indispensable in the Pathogenesis of Anti-Collagen Antibody-Induced Arthritis. International Immunology, 24, 539-550.
https://doi.org/10.1093/intimm/dxs078
[25]  Pine, P.R., Chang, B., Schoettler, N., Banquerigo, M.L., Wang, S., Lau, A., et al. (2007) Inflammation and Bone Erosion Are Suppressed in Models of Rheumatoid Arthritis Following Treatment with a Novel Syk Inhibitor. Clinical Immunology, 124, 244-257.
https://doi.org/10.1016/j.clim.2007.03.543
[26]  Weinblatt, M.E., Kavanaugh, A., Burgos‐Vargas, R., Dikranian, A.H., Medrano‐Ramirez, G., Morales‐Torres, J.L., et al. (2008) Treatment of Rheumatoid Arthritis with a Syk Kinase Inhibitor: A Twelve‐Week, Randomized, Placebo‐Controlled Trial. Arthritis & Rheumatism, 58, 3309-3318.
https://doi.org/10.1002/art.23992
[27]  Boyle, W.J., Simonet, W.S. and Lacey, D.L. (2003) Osteoclast Differentiation and Activation. Nature, 423, 337-342.
https://doi.org/10.1038/nature01658
[28]  Humphrey, M.B., Ogasawara, K., Yao, W., Spusta, S.C., Daws, M.R., Lane, N.E., et al. (2004) The Signaling Adapter Protein DAP12 Regulates Multinucleation during Osteoclast Development. Journal of Bone and Mineral Research, 19, 224-234.
https://doi.org/10.1359/jbmr.0301234
[29]  Paloneva, J., Mandelin, J., Kiialainen, A., Böhling, T., Prudlo, J., Hakola, P., et al. (2003) DAP12/TREM2 Deficiency Results in Impaired Osteoclast Differentiation and Osteoporotic Features. The Journal of Experimental Medicine, 198, 669-675.
https://doi.org/10.1084/jem.20030027
[30]  Győri, D.S. and Mócsai, A. (2020) Osteoclast Signal Transduction during Bone Metastasis Formation. Frontiers in Cell and Developmental Biology, 8, Article No. 507.
https://doi.org/10.3389/fcell.2020.00507
[31]  Csete, D., Simon, E., Alatshan, A., Aradi, P., Dobó-Nagy, C., Jakus, Z., et al. (2019) Hematopoietic or Osteoclast-Specific Deletion of Syk Leads to Increased Bone Mass in Experimental Mice. Frontiers in Immunology, 10, Article No. 937.
https://doi.org/10.3389/fimmu.2019.00937
[32]  Newland, A. and McDonald, V. (2020) Fostamatinib: A Review of Its Clinical Efficacy and Safety in the Management of Chronic Adult Immune Thrombocytopenia. Immunotherapy, 12, 1325-1340.
https://doi.org/10.2217/imt-2020-0215
[33]  Braselmann, S., Taylor, V., Zhao, H., Wang, S., Sylvain, C., Baluom, M., et al. (2006) R406, an Orally Available Spleen Tyrosine Kinase Inhibitor Blocks Fc Receptor Signaling and Reduces Immune Complex-Mediated Inflammation. The Journal of Pharmacology and Experimental Therapeutics, 319, 998-1008.
https://doi.org/10.1124/jpet.106.109058
[34]  Pine, P.R., Chang, B., Schoettler, N., Banquerigo, M.L., Wang, S., Lau, A., et al. (2007) Inflammation and Bone Erosion Are Suppressed in Models of Rheumatoid Arthritis Following Treatment with a Novel Syk Inhibitor. Clinical Immunology, 124, 244-257.
https://doi.org/10.1016/j.clim.2007.03.543
[35]  Currie, K.S., Kropf, J.E., Lee, T., Blomgren, P., Xu, J., Zhao, Z., et al. (2014) Discovery of GS-9973, a Selective and Orally Efficacious Inhibitor of Spleen Tyrosine Kinase. Journal of Medicinal Chemistry, 57, 3856-3873.
https://doi.org/10.1021/jm500228a
[36]  Taylor, P.C., Genovese, M.C., Greenwood, M., Ho, M., Nasonov, E., Oemar, B., et al. (2015) OSKIRA-4: A Phase IIb Randomised, Placebo-Controlled Study of the Efficacy and Safety of Fostamatinib Monotherapy. Annals of the Rheumatic Diseases, 74, 2123-2129.
https://doi.org/10.1136/annrheumdis-2014-205361
[37]  Cho, S., Jang, E., Yoon, T., Hwang, H. and Youn, J. (2022) A Novel Selective Spleen Tyrosine Kinase Inhibitor SKI-O-703 (Cevidoplenib) Ameliorates Lupus Nephritis and Serum-Induced Arthritis in Murine Models. Clinical and Experimental Immunology, 211, 31-45.
https://doi.org/10.1093/cei/uxac096
[38]  Yang, R., et al. (2024) Efficacy and Safety of the Syk Inhibitor Sovleplenib (HMPL-523) in Adult Patients with Chronic Primary Immune Thrombocytopenia in China (ESLIM-01): A Randomized, Double-Blind, Placebo-Controlled Phase 3 Study. The European Hematology Association (EHA).
https://doi.org/10.1016/S2352-3026(24)00139-X

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133