全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

单轨车辆的动力学建模与自平衡控制仿真
The Dynamic Modeling and Self-Balancing Control Simulation of Monorail Vehicles

DOI: 10.12677/app.2025.151002, PP. 12-24

Keywords: 单轨车辆,经典PID控制,模糊PID控制,PSO-GA算法优化PID控制
Monorail Vehicle
, Classical PID Control, Fuzzy PID Control, PSO-GA Optimized PID Control

Full-Text   Cite this paper   Add to My Lib

Abstract:

本研究旨在了解单轨车辆的运动特点及找到一种较优异的自平衡控制方案。本文首先建立了单轨车辆的动力学方程,在此基础上,设计了经典PID控制器、模糊PID控制器、针对经典PID控制器寻参困难情况,提出PSO-GA算法优化的PID控制器,共计三种仿真控制方案,完成单轨车辆在做匀速直线运动时的自平衡控制。仿真结果表明,针对所设计的单轨车辆,PSO-GA算法优化的PID控制器由于具有较强的随机性,对于复杂系统,不能快速高效的寻找最优解,模糊PID控制器对于该模型有稳定的较好的控制效果。本研究为优化单轨车辆的稳定性设计、提高控制性能提供了可供参考的指导和借鉴。
This study aims to understand the motion characteristics of a monorail vehicle and find an optimal self-balancing control scheme. First, the dynamic equations of the monorail vehicle are established. Based on this, three simulation control schemes are designed: the classical PID controller, the fuzzy PID controller, and a PID controller optimized using the PSO-GA algorithm to address the difficulty in parameter tuning for the classical PID controller. The self-balancing control of the monorail vehicle during uniform straight-line motion is then performed. Simulation results indicate that, for the designed monorail vehicle, the PID controller optimized by the PSO-GA algorithm, due to its strong randomness, is not efficient in quickly finding the optimal solution for complex systems. On the other hand, the fuzzy PID controller provides stable and satisfactory control performance for this model. This study offers useful guidance and reference for optimizing the stability design and improving the control performance of monorail vehicles.

References

[1]  Park, S. and Yi, S. (2019) Active Balancing Control for Unmanned Bicycle Using Scissored-Pair Control Moment Gyroscope. International Journal of Control, Automation and Systems, 18, 217-224.
https://doi.org/10.1007/s12555-018-0749-7
[2]  Tamayo-Leon, S., Pulido-Guerrero, S. and Coral-Enriquez, H. (2017) Self-Stabilization of a Riderless Bicycle with a Control Moment Gyroscope via Model-Based Active Disturbance Rejection Control. 2017 IEEE 3rd Colombian Conference on Automatic Control (CCAC), Cartagena, 18-20 October 2017, 1-6.
https://doi.org/10.1109/ccac.2017.8276434
[3]  兰野. 基于惯性轮式自行车的平衡与运动控制[D]: [硕士学位论文]. 哈尔滨: 哈尔滨工业大学, 2021.
[4]  丁进峰. 自平衡两轮车动力学建模及行驶控制研究[D]: [硕士学位论文]. 重庆: 重庆理工大学, 2023.
[5]  Wang, E. X., Wang, Y., Liang, J., Chen, R., Zeng, Z., Xue, G., et al. (2016) Symbolic Derivation of Nonlinear Benchmark Bicycle Dynamics with Toroidal Wheels. Proceedings, Bicycle and Motorcycle Dynamics 2016 Symposium on the Dynamics and Control of Single Track Vehicles, Eindhoven, 22-24 June, 21-23.
[6]  Pin, G. and Parisini, T. (2011) Networked Predictive Control of Uncertain Constrained Nonlinear Systems: Recursive Feasibility and Input-to-State Stability Analysis. IEEE Transactions on Automatic Control, 56, 72-87.
https://doi.org/10.1109/tac.2010.2051091
[7]  Kooijman, J.D.G., Schwab, A.L. and Meijaard, J.P. (2007) Experimental Validation of a Model of an Uncontrolled Bicycle. Multibody System Dynamics, 19, 115-132.
https://doi.org/10.1007/s11044-007-9050-x
[8]  熊超伟, 王峰, 揭云飞, 等. 基于PID控制的机器人自行车自平衡系统研究[J]. 电脑知识与技术: 学术版, 2018, 14(7): 274-275.
[9]  许潇. 一种变结构轮式机器人的动力学建模与控制[D]: [硕士学位论文]. 北京: 北京邮电大学, 2018.
[10]  Zheng, Y., Dai, R. and Zhou, Z. (2019) Design of Torque System for Electric Bicycle Based on Fuzzy Pid. The Journal of Engineering, 2019, 8710-8714.
https://doi.org/10.1049/joe.2018.9089
[11]  夏从东, 王笑天, 渠军. 基于PSO-PID模型的城市轨道交通精确停车设计[J]. 现代城市轨道交通, 2024(9): 44-49.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133