|
京津冀地区一次气溶胶和层云微物理特征的飞机探测分析
|
Abstract:
本文利用2017年8月27日京津冀地区组织的5架飞机联合探测资料,重点分析研究了层状云系不同发展阶段的气溶胶和云微物理变化特征,主要结论有:1、气溶胶主要分布在3 km以下,成熟阶段云内Na比减弱时段明显要大,入云后Na随高度先减小后增加。平均De随着高度增加而增加,成熟阶段明显小于减弱阶段。2、小云粒子表现出明显分层,成熟阶段的Nc和LWC大于减弱阶段。逆温层以下,Na和云滴De之间存在正相关关系。成熟阶段的相对离散度分布范围更大,Nc值更大,以更小速度收敛。3、不同区域间大云粒子主要分布在3 km以上,减弱阶段云层高度更高。河北较北京地区Nic要小,Dm更大,在5 km以上的IWC更大。在0℃层以下,平均IWC普遍较小,最大值也不超过0.1 g m?3,在5 km以上,平均IWC随高度逐渐增加。
The microphysical properties of aerosols and cloud in stratiform cloud system at different development stages were analyzed based on the observation data of 5 aircrafts organized in the Beijing-Tianjin-Hebei region on August 27, 2017. The main results: (1) Aerosols are mainly distributed below 3 km. Na is larger in the mature stage than in the weakening stage. Na decreases first when entering cloud and then increases with height. The average De increases with the increase of height, which is significantly smaller in the mature stage than in the weakening stage. (2) The characteristics of small cloud droplets show obvious stratification, and the Nc and LWC in the mature stage are larger than those in the weakening stage. Below the inversion layer, there is a positive correlation between Na and cloud droplets De. The relative dispersion shows the distribution range is larger, Nc is larger, and convergence rate is smaller in the mature stage. (3) Large cloud particles are mainly distributed over 3 km in different regions. Besides, the cloud layer height is higher in the weakening stage. Compared with Beijing, Nic is smaller, Dm is larger, IWC above 5 km is larger in Hebei. Below 0?C layer, the average IWC is generally small, the maximum value does not exceed 0.1 g m?3, while it increases gradually with height above 5 km layer.
[1] | Stubenrauch, C.J., Rossow, W.B., Kinne, S., Ackerman, S., Cesana, G., Chepfer, H., et al. (2013) Assessment of Global Cloud Datasets from Satellites: Project and Database Initiated by the GEWEX Radiation Panel. Bulletin of the American Meteorological Society, 94, 1031-1049. https://doi.org/10.1175/bams-d-12-00117.1 |
[2] | Hartmann, D.L., Ockert-Bell, M.E. and Michelsen, M.L. (1992) The Effect of Cloud Type on Earth’s Energy Balance: Global Analysis. Journal of Climate, 5, 1281-1304. https://doi.org/10.1175/1520-0442(1992)005<1281:teocto>2.0.co;2 |
[3] | Zhao, C., Chen, Y., Li, J., Letu, H., Su, Y., Chen, T., et al. (2019) Fifteen‐Year Statistical Analysis of Cloud Characteristics over China Using Terra and Aqua Moderate Resolution Imaging Spectroradiometer Observations. International Journal of Climatology, 39, 2612-2629. https://doi.org/10.1002/joc.5975 |
[4] | 樊曙先. 层状云微物理结构演变特征的个例研究[J]. 宁夏大学学报: 自然科学版, 2000, 21(2): 180-182. |
[5] | 侯团结, 胡朝霞, 雷恒池. 吉林一次降水层状云的结构和物理过程研究[J]. 气象学报, 2011, 69(3): 508-520. |
[6] | Lü, Y., Lei, H. and Yang, J. (2017) Aircraft Measurements of Cloud-Aerosol Interaction over East Inner Mongolia. Advances in Atmospheric Sciences, 34, 983-992. https://doi.org/10.1007/s00376-017-6242-z |
[7] | 亓鹏, 郭学良, 卢广献, 等. 华北太行山东麓一次稳定性积层混合云飞机观测研究: 对流云/对流泡和融化层结构特征[J]. 大气科学, 2019, 43(6): 1365-1384. |
[8] | Hou, T., Lei, H., He, Y., Yang, J., Zhao, Z. and Hu, Z. (2021) Aircraft Measurements of the Microphysical Properties of Stratiform Clouds with Embedded Convection. Advances in Atmospheric Sciences, 38, 966-982. https://doi.org/10.1007/s00376-021-0287-8 |
[9] | 杨洁帆, 胡向峰, 雷恒池, 等. 太行山东麓层状云微物理特征的飞机观测研究[J]. 大气科学, 2021, 45(1): 88-106. |
[10] | Wei, L., Lei, H., Hu, W., Huang, M., Zhang, R., Zhang, X., et al. (2022) An Analysis of the Microstructure of the Melting Layer of a Precipitating Stratiform Cloud at the Dissipation Stage. Atmosphere, 13, Article No. 284. https://doi.org/10.3390/atmos13020284 |
[11] | Albrecht, B.A. (1989) Aerosols, Cloud Microphysics, and Fractional Cloudiness. Science, 245, 1227-1230. https://doi.org/10.1126/science.245.4923.1227 |
[12] | Hudson, J.G. and Yum, S.S. (2002) Cloud Condensation Nuclei Spectra and Polluted and Clean Clouds over the Indian Ocean. Journal of Geophysical Research: Atmospheres, 107, INX2 21-1-INX2 21-12. https://doi.org/10.1029/2001jd000829 |
[13] | Wang, H.L., Zhu, B., Shen, L.J., et al. (2014) Size Distributions of Aerosol during the Spring Festival in Nanjing. Environmental Science, 2, 442-450. |
[14] | Yang, Y., Zhao, C., Dong, X., Fan, G., Zhou, Y., Wang, Y., et al. (2019) Toward Understanding the Process-Level Impacts of Aerosols on Microphysical Properties of Shallow Cumulus Cloud Using Aircraft Observations. Atmospheric Research, 221, 27-33. https://doi.org/10.1016/j.atmosres.2019.01.027 |
[15] | Lu, M., Feingold, G., Jonsson, H.H., Chuang, P.Y., Gates, H., Flagan, R.C., et al. (2008) Aerosol‐Cloud Relationships in Continental Shallow Cumulus. Journal of Geophysical Research: Atmospheres, 113, D15201. https://doi.org/10.1029/2007jd009354 |
[16] | Zhao, C., Qiu, Y., Dong, X., Wang, Z., Peng, Y., Li, B., et al. (2018) Negative Aerosol‐Cloud re Relationship from Aircraft Observations over Hebei, China. Earth and Space Science, 5, 19-29. https://doi.org/10.1002/2017ea000346 |
[17] | Tang, J., Wang, P., Mickley, L.J., Xia, X., Liao, H., Yue, X., et al. (2014) Positive Relationship between Liquid Cloud Droplet Effective Radius and Aerosol Optical Depth over Eastern China from Satellite Data. Atmospheric Environment, 84, 244-253. https://doi.org/10.1016/j.atmosenv.2013.08.024 |
[18] | 孙霞, 银燕, 韩洋, 等. 石家庄地区雾霾天气下云滴和云凝结核的分布特征[J]. 中国环境科学, 2012, 32(7): 1165-1170. |
[19] | Liu, P., Zhao, C., Zhang, Q., Deng, Z., Huang, M., Ma, X., et al. (2009) Aircraft Study of Aerosol Vertical Distributions over Beijing and Their Optical Properties. Tellus B: Chemical and Physical Meteorology, 61, 756-767. https://doi.org/10.1111/j.1600-0889.2009.00440.x |
[20] | Seinfeld, J.H. and Pandis, S.N. (1997) Atmospheric Chemistry and Physics: From Air Pollution to Climate Change. Wiley Interscience, 444-445. |
[21] | 盛裴轩, 毛节泰, 李建国, 等. 大气物理学[M]. 北京: 北京大学出版社, 2003: 522. |
[22] | Deng, Z., Zhao, C., Zhang, Q., Huang, M. and Ma, X. (2009) Statistical Analysis of Microphysical Properties and the Parameterization of Effective Radius of Warm Clouds in Beijing Area. Atmospheric Research, 93, 888-896. https://doi.org/10.1016/j.atmosres.2009.04.011 |
[23] | 吕玉环, 雷恒池, 魏蕾. 中国北方典型地区不同类型云微物理特征分析[J]. 气象科技, 2021, 49(3): 455-463. |
[24] | Liu, Y.G. and Daum, P.H. (2000) Which Size Distribution Function to Use for Studies Related to Effective Radius. Proceedings of 13th International Conference on Clouds and Precipitation, Reno, 14-18 August 2000, 586-589. |
[25] | Heymsfield, A.J., Schmitt, C.G., Bansemer, A., Baumgardner, D., Weinstock, E.M., Smith, J.T., et al. (2004) Effective Ice Particle Densities for Cold Anvil Cirrus. Geophysical Research Letters, 31, L02101. https://doi.org/10.1029/2003gl018311 |
[26] | Korolev, A. and Isaac, G.A. (2005) Shattering during Sampling by OAPs and HVPS. Part I: Snow Particles. Journal of Atmospheric and Oceanic Technology, 22, 528-542. https://doi.org/10.1175/jtech1720.1 |
[27] | Yang, J., Lei, H., Hu, Z. and Hou, T. (2014) Particle Size Spectra and Possible Mechanisms of High Ice Concentration in Nimbostratus over Hebei Province, China. Atmospheric Research, 142, 79-90. https://doi.org/10.1016/j.atmosres.2013.12.018 |
[28] | Hou, T., Lei, H., Hu, Z. and Zhou, J. (2014) Aircraft Observations of Ice Particle Properties in Stratiform Precipitating Clouds. Advances in Meteorology, 2014, Article ID: 206352. https://doi.org/10.1155/2014/206352 |