全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

3.0T-MRI表观扩散系数预测肺腺癌脑转移全脑放疗联合化疗疗效
3.0T-MRI Mean Apparent Diffusion Coefficient May Predict Tumor Response to Whole-Brain Radiation Therapy Combined with Chemotherapy in Lung Adenocarcinoma Patients with Brain Metastases

DOI: 10.12677/acm.2025.151038, PP. 264-273

Keywords: 表观扩散系数,肺腺癌,多发脑转移,WBRT
Apparent Diffusion Coefficient
, Lung Adenocarcinoma, Multiple Brain Metastases, WBRT

Full-Text   Cite this paper   Add to My Lib

Abstract:

目的:探讨表观扩散系数(ADC)对肺腺癌多发脑转移全脑放疗联合全身化疗疗效的预测作用。方法:选取青岛大学附属医院2019年7月~2023年7月收治的60例肺腺癌合并多发脑转移行WBRT联合化疗的患者,于治疗前、治疗开始后12周内行磁共振弥散加权成像检查测定ADC值。依据实体瘤的疗效评价标准(RECIST)评价疗效,讨论治疗前MRI扩散加权成像表观扩散系数(pre-ADCmean)、δADC值与放化疗疗效之间的关系。结果:60例患者中同步放化疗治疗有效者32例,无效者28例。治疗有效组pre-ADCmean高于治疗无效组(P < 0.05)。ROC分析结果显示,pre-ADCmean值预测肺腺癌多发脑转移患者同步放化疗疗效的曲线下面积(AUC) > 0.70,有一定预测价值。结论:3.0T-MRI扩散加权成像表观扩散系数可预测肺腺癌多发脑转移行全脑放疗联合化疗疗效。
Objective: The objective was to evaluate the performance of ADC as a predictor of treatment outcomes associated with WBRT and chemotherapeutic agents in patients affected by lung adenocarcinoma (LUAD) originating in brain metastases (BMs). Methods: A retrospective analysis was conducted of 60 patients with LUAD with BMs who underwent WBRT and chemotherapy at the Affiliated Hospital of Qingdao University from July 2019 to July 2023, and measured the ADC value by DWI imaging before and within 12 weeks after treatment. According to the response evaluation criteria in solid tumors (RECIST), the efficacy was evaluated, and the relationships between pre-ADCmean and δADC values on MRI diffusion-weighted imaging and the efficacy of radiotherapy and chemotherapy were discussed. Results: Among the 60 patients, there were 32 responded to chemoradiotherapy, while 28 did not. The pre-ADCmean values of the effective group was higher than that of the ineffective group (P < 0.05). The ROC analysis showed that the pre-ADCmean value had a predictive value for the efficacy of concurrent chemoradiotherapy in patients with multiple brain metastases from lung adenocarcinoma, with an area under the curve (AUC) of >0.70. Conclusion: The apparent diffusion coefficient of 3.0T-MRI diffusion-weighted imaging can predict the efficacy of whole brain radiotherapy combined with chemotherapy for multiple brain metastases from lung adenocarcinoma.

References

[1]  Lah, T.T., Novak, M. and Breznik, B. (2020) Brain Malignancies: Glioblastoma and Brain Metastases. Seminars in Cancer Biology, 60, 262-273.
https://doi.org/10.1016/j.semcancer.2019.10.010
[2]  Li, Y., Liu, Y., Liang, Y., Wei, R., Zhang, W., Yao, W., et al. (2022) Radiomics Can Differentiate High-Grade Glioma from Brain Metastasis: A Systematic Review and Meta-analysis. European Radiology, 32, 8039-8051.
https://doi.org/10.1007/s00330-022-08828-x
[3]  Takei, H., Rouah, E. and Ishida, Y. (2015) Brain Metastasis: Clinical Characteristics, Pathological Findings and Molecular Subtyping for Therapeutic Implications. Brain Tumor Pathology, 33, 1-12.
https://doi.org/10.1007/s10014-015-0235-3
[4]  Lapointe, S., Perry, A. and Butowski, N.A. (2018) Primary Brain Tumours in Adults. The Lancet, 392, 432-446.
https://doi.org/10.1016/s0140-6736(18)30990-5
[5]  Cagney, D.N., Martin, A.M., Catalano, P.J., Redig, A.J., Lin, N.U., Lee, E.Q., et al. (2017) Incidence and Prognosis of Patients with Brain Metastases at Diagnosis of Systemic Malignancy: A Population-Based Study. Neuro-Oncology, 19, 1511-1521.
https://doi.org/10.1093/neuonc/nox077
[6]  Kuksis, M., Gao, Y., Tran, W., Hoey, C., Kiss, A., Komorowski, A.S., et al. (2020) The Incidence of Brain Metastases among Patients with Metastatic Breast Cancer: A Systematic Review and Meta-Analysis. Neuro-Oncology, 23, 894-904.
https://doi.org/10.1093/neuonc/noaa285
[7]  Passiglia, F., Caglevic, C., Giovannetti, E., Pinto, J., Manca, P., Taverna, S., et al. (2018) Primary and Metastatic Brain Cancer Genomics and Emerging Biomarkers for Immunomodulatory Cancer Treatment. Seminars in Cancer Biology, 52, 259-268.
https://doi.org/10.1016/j.semcancer.2018.01.015
[8]  Boire, A., Brastianos, P.K., Garzia, L. and Valiente, M. (2019) Brain Metastasis. Nature Reviews Cancer, 20, 4-11.
https://doi.org/10.1038/s41568-019-0220-y
[9]  Arvanitis, C.D., Ferraro, G.B. and Jain, R.K. (2019) The Blood-Brain Barrier and Blood-Tumour Barrier in Brain Tumours and Metastases. Nature Reviews Cancer, 20, 26-41.
https://doi.org/10.1038/s41568-019-0205-x
[10]  Suh, J.H., Kotecha, R., Chao, S.T., Ahluwalia, M.S., Sahgal, A. and Chang, E.L. (2020) Current Approaches to the Management of Brain Metastases. Nature Reviews Clinical Oncology, 17, 279-299.
https://doi.org/10.1038/s41571-019-0320-3
[11]  Page, S., Milner-Watts, C., Perna, M., Janzic, U., Vidal, N., Kaudeer, N., et al. (2020) Systemic Treatment of Brain Metastases in Non-Small Cell Lung Cancer. European Journal of Cancer, 132, 187-198.
https://doi.org/10.1016/j.ejca.2020.03.006
[12]  Messina, C., Bignone, R., Bruno, A., Bruno, A., Bruno, F., Calandri, M., et al. (2020) Diffusion-Weighted Imaging in Oncology: An Update. Cancers, 12, Article 1493.
https://doi.org/10.3390/cancers12061493
[13]  Sobeh, T., Inbar, Y., Apter, S., Soffer, S., Anteby, R., Kraus, M., et al. (2023) Diffusion-Weighted MRI for Predicting and Assessing Treatment Response of Liver Metastases from CRC—A Systematic Review and Meta-Analysis. European Journal of Radiology, 163, Article ID: 110810.
https://doi.org/10.1016/j.ejrad.2023.110810
[14]  Bozdağ, M., Er, A. and Çinkooğlu, A. (2020) Histogram Analysis of ADC Maps for Differentiating Brain Metastases from Different Histological Types of Lung Cancers. Canadian Association of Radiologists Journal, 72, 271-278.
https://doi.org/10.1177/0846537120933837
[15]  Müller, S.J., Khadhraoui, E., Neef, N.E., Riedel, C.H. and Ernst, M. (2021) Differentiation of Brain Metastases from Small and Non-Small Lung Cancers Using Apparent Diffusion Coefficient (ADC) Maps. BMC Medical Imaging, 21, Article No. 70.
https://doi.org/10.1186/s12880-021-00602-7
[16]  Nieder, C., Andratschke, N.H. and Grosu, A.L. (2023) Brain Metastases: Is There Still a Role for Whole-Brain Radiation Therapy? Seminars in Radiation Oncology, 33, 129-138.
https://doi.org/10.1016/j.semradonc.2023.01.005
[17]  Smits, M. (2021) MRI Biomarkers in Neuro-Oncology. Nature Reviews Neurology, 17, 486-500.
https://doi.org/10.1038/s41582-021-00510-y
[18]  Borggreve, A.S., Heethuis, S.E., Boekhoff, M.R., Goense, L., van Rossum, P.S.N., Brosens, L.A.A., et al. (2019) Optimal Timing for Prediction of Pathologic Complete Response to Neoadjuvant Chemoradiotherapy with Diffusion-Weighted MRI in Patients with Esophageal Cancer. European Radiology, 30, 1896-1907.
https://doi.org/10.1007/s00330-019-06513-0
[19]  Zhao, L., Zhao, M., Liu, J., Yang, H., Zhou, X., Wen, C., et al. (2021) Mean Apparent Diffusion Coefficient in a Single Slice May Predict Tumor Response to Whole-Brain Radiation Therapy in Non-Small-Cell Lung Cancer Patients with Brain Metastases. European Radiology, 31, 5565-5575.
https://doi.org/10.1007/s00330-020-07584-0
[20]  Jung, W.S., Park, C.H., Hong, C., Suh, S.H. and Ahn, S.J. (2018) Diffusion-Weighted Imaging of Brain Metastasis from Lung Cancer: Correlation of MRI Parameters with the Histologic Type and Gene Mutation Status. American Journal of Neuroradiology, 39, 273-279.
https://doi.org/10.3174/ajnr.a5516
[21]  Jakubovic, R., Zhou, S., Heyn, C., Soliman, H., Zhang, L., Aviv, R., et al. (2016) The Predictive Capacity of Apparent Diffusion Coefficient (ADC) in Response Assessment of Brain Metastases Following Radiation. Clinical & Experimental Metastasis, 33, 277-284.
https://doi.org/10.1007/s10585-016-9778-x
[22]  Jiang, C., Liu, X., Qu, Q., Jiang, Z. and Wang, Y. (2023) Prediction of Adenocarcinoma and Squamous Carcinoma Based on CT Perfusion Parameters of Brain Metastases from Lung Cancer: A Pilot Study. Frontiers in Oncology, 13, Article 1225170.
https://doi.org/10.3389/fonc.2023.1225170
[23]  Razek, A.A.K.A., Tawfik, A.M., Elsorogy, L.G.A. and Soliman, N.Y. (2014) Perfusion CT of Head and Neck Cancer. European Journal of Radiology, 83, 537-544.
https://doi.org/10.1016/j.ejrad.2013.12.008
[24]  Brynolfsson, P., Lerner, M., Sundgren, P.C., Jamtheim Gustafsson, C., Nilsson, M., Szczepankiewicz, F., et al. (2022) Tensor-Valued Diffusion Magnetic Resonance Imaging in a Radiotherapy Setting. Physics and Imaging in Radiation Oncology, 24, 144-151.
https://doi.org/10.1016/j.phro.2022.11.005
[25]  Henderson, F., Abdullah, K.G., Verma, R. and Brem, S. (2020) Tractography and the Connectome in Neurosurgical Treatment of Gliomas: The Premise, the Progress, and the Potential. Neurosurgical Focus, 48, E6.
https://doi.org/10.3171/2019.11.focus19785
[26]  Lindner, T., Bolar, D.S., Achten, E., Barkhof, F., Bastos‐Leite, A.J., Detre, J.A., et al. (2023) Current State and Guidance on Arterial Spin Labeling Perfusion MRI in Clinical Neuroimaging. Magnetic Resonance in Medicine, 89, 2024-2047.
https://doi.org/10.1002/mrm.29572
[27]  Manning, P., Daghighi, S., Rajaratnam, M.K., Parthiban, S., Bahrami, N., Dale, A.M., et al. (2020) Differentiation of Progressive Disease from Pseudoprogression Using 3D PCASL and DSC Perfusion MRI in Patients with Glioblastoma. Journal of Neuro-Oncology, 147, 681-690.
https://doi.org/10.1007/s11060-020-03475-y

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133