全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

肝细胞癌免疫治疗进展的研究现状与展望
Current Research Status and Prospects of Immunotherapy Advances in Hepatocellular Carcinoma

DOI: 10.12677/acm.2025.151037, PP. 254-263

Keywords: 肝细胞癌,免疫治疗,免疫检查点抑制剂,CAR-T细胞治疗
Hepatocellular Carcinoma
, Immunotherapy, Immune Checkpoint Inhibitors, Chimeric Antigen Receptor T-Cell Immunotherapy

Full-Text   Cite this paper   Add to My Lib

Abstract:

肝细胞癌(Hepatocellular carcinoma, HCC)是原发性肝癌中最常见的类型,也是全球癌症相关死亡的主要原因之一。近年来,随着肿瘤免疫学研究的深入和免疫治疗策略的快速发展,免疫治疗在HCC治疗中展现出良好的应用前景。本文综述了HCC免疫治疗的最新研究进展,重点阐述了免疫检查点抑制剂、CAR-T细胞治疗、治疗性疫苗等免疫治疗策略在HCC中的应用现状,并对未来发展方向进行展望。
Hepatocellular carcinoma (HCC) is the most common type of primary liver cancer and one of the leading causes of cancer-related deaths worldwide. In recent years, with in-depth research on tumor immunology and the rapid development of immunotherapy strategies, immunotherapy has shown promising applications in the treatment of HCC. This article reviews the latest research progress in HCC immunotherapy, focuses on the current status of the application of immunotherapeutic strategies such as immune checkpoint inhibitors, CAR-T cell therapy, and therapeutic vaccines in HCC, and looks forward to the future direction of development.

References

[1]  Llovet, J.M., Kelley, R.K., Villanueva, A., Singal, A.G., Pikarsky, E., Roayaie, S., et al. (2021) Hepatocellular Carcinoma. Nature Reviews Disease Primers, 7, Article No. 6.
https://doi.org/10.1038/s41572-020-00240-3
[2]  Bray, F., Laversanne, M., Sung, H., Ferlay, J., Siegel, R.L., Soerjomataram, I., et al. (2024) Global Cancer Statistics 2022: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA: A Cancer Journal for Clinicians, 74, 229-263.
https://doi.org/10.3322/caac.21834
[3]  Gao, Y., You, M., Fu, J., Tian, M., Zhong, X., Du, C., et al. (2022) Intratumoral Stem-Like CCR4+ Regulatory T Cells Orchestrate the Immunosuppressive Microenvironment in HCC Associated with Hepatitis B. Journal of Hepatology, 76, 148-159.
https://doi.org/10.1016/j.jhep.2021.08.029
[4]  Hoechst, B., Voigtlaender, T., Ormandy, L., Gamrekelashvili, J., Zhao, F., Wedemeyer, H., et al. (2009) Myeloid Derived Suppressor Cells Inhibit Natural Killer Cells in Patients with Hepatocellular Carcinoma via the NKP30 Receptor. Hepatology, 50, 799-807.
https://doi.org/10.1002/hep.23054
[5]  Gupta, T. and Jarpula, N.S. (2024) Hepatocellular Carcinoma Immune Microenvironment and Check Point Inhibitors-Current Status. World Journal of Hepatology, 16, 353-365.
https://doi.org/10.4254/wjh.v16.i3.353
[6]  Wu, J., Lu, A.D., Zhang, L.P., et al. (2019) Study of Clinical Outcome and Prognosis in Pediatric Core Binding Factor-Acute Myeloid Leukemia. Chinese Journal of Hematology, 40, 52-57.
[7]  Hou, K., Xu, X., Ge, X., Jiang, J. and Ouyang, F. (2023) Blockade of PD-1 and CTLA-4: A Potent Immunotherapeutic Approach for Hepatocellular Carcinoma. BioFactors, 50, 250-265.
https://doi.org/10.1002/biof.2012
[8]  Li, X., Hu, W., Zheng, X., Zhang, C., Du, P., Zheng, Z., et al. (2015) Emerging Immune Checkpoints for Cancer Therapy. Acta Oncologica, 54, 1706-1713.
https://doi.org/10.3109/0284186x.2015.1071918
[9]  El-Khoueiry, A.B., Sangro, B., Yau, T., Crocenzi, T.S., Kudo, M., Hsu, C., et al. (2017) Nivolumab in Patients with Advanced Hepatocellular Carcinoma (Checkmate 040): An Open-Label, Non-Comparative, Phase 1/2 Dose Escalation and Expansion Trial. The Lancet, 389, 2492-2502.
https://doi.org/10.1016/s0140-6736(17)31046-2
[10]  Yau, T., Park, J., Finn, R.S., Cheng, A., Mathurin, P., Edeline, J., et al. (2022) Nivolumab versus Sorafenib in Advanced Hepatocellular Carcinoma (Checkmate 459): A Randomized, Multi-Centre, Open-Label, Phase 3 Trial. The Lancet Oncology, 23, 77-90.
https://doi.org/10.1016/s1470-2045(21)00604-5
[11]  Zhu, A.X., Finn, R.S., Edeline, J., Cattan, S., Ogasawara, S., Palmer, D., et al. (2018) Pembrolizumab in Patients with Advanced Hepatocellular Carcinoma Previously Treated with Sorafenib (KEYNOTE-224): A Non-Randomized, Open-Label Phase 2 Trial. The Lancet Oncology, 19, 940-952.
https://doi.org/10.1016/s1470-2045(18)30351-6
[12]  Kudo, M., Finn, R.S., Edeline, J., Cattan, S., Ogasawara, S., Palmer, D.H., et al. (2022) Updated Efficacy and Safety of KEYNOTE-224: A Phase II Study of Pembrolizumab in Patients with Advanced Hepatocellular Carcinoma Previously Treated with Sorafenib. European Journal of Cancer, 167, 1-12.
https://doi.org/10.1016/j.ejca.2022.02.009
[13]  Kuo, H., Han, M., Liao, C., Lin, Y., Wang, C., Chen, S., et al. (2022) Real-World Comparative Effectiveness of Nivolumab versus Pembrolizumab in Patients with Unresectable Hepatocellular Carcinoma. Pharmaceutics, 14, Article 2263.
https://doi.org/10.3390/pharmaceutics14112263
[14]  Chen, Y., Tsai, C., Chen, Y., Wang, C., Wang, J., Hung, C., et al. (2023) Real-World Comparison of Pembrolizumab and Nivolumab in Advanced Hepatocellular Carcinoma. BMC Cancer, 23, Article No. 810.
https://doi.org/10.1186/s12885-023-11298-z
[15]  Huang, X., Xu, L., Ma, T., Yin, X., Huang, Z., Ran, Y., et al. (2021) Lenvatinib Plus Immune Checkpoint Inhibitors Improve Survival in Advanced Hepatocellular Carcinoma: A Retrospective Study. Frontiers in Oncology, 11, Article 751159.
https://doi.org/10.3389/fonc.2021.751159
[16]  Scheiner, B., Kirstein, M.M., Hucke, F., Finkelmeier, F., Schulze, K., von Felden, J., et al. (2019) Programmed Cell Death Protein-1 (PD-1)-Targeted Immunotherapy in Advanced Hepatocellular Carcinoma: Efficacy and Safety Data from an International Multi-Centre Real-World Cohort. Alimentary Pharmacology & Therapeutics, 49, 1323-1333.
https://doi.org/10.1111/apt.15245
[17]  Qin, S., Ren, Z., Meng, Z., Chen, Z., Chai, X., Xiong, J., et al. (2020) Camrelizumab in Patients with Previously Treated Advanced Hepatocellular Carcinoma: A Multicentre, Open-Label, Parallel-Group, Randomized, Phase 2 Trial. The Lancet Oncology, 21, 571-580.
https://doi.org/10.1016/s1470-2045(20)30011-5
[18]  Abou-Alfa, G.K.,Lau, G., Kudo, M., et al. (2022) Tremelimumab plus Durvalumab in Unresectable Hepatocellular Carcinoma. NEJM Evidence, 1, EVIDoa2100070.
[19]  Yau, T., Kang, Y., Kim, T., El-Khoueiry, A.B., Santoro, A., Sangro, B., et al. (2020) Efficacy and Safety of Nivolumab Plus Ipilimumab in Patients with Advanced Hepatocellular Carcinoma Previously Treated with Sorafenib. JAMA Oncology, 6, e204564.
https://doi.org/10.1001/jamaoncol.2020.4564
[20]  Qin, S., Kudo, M., Meyer, T., Bai, Y., Guo, Y., Meng, Z., et al. (2023) Tislelizumab vs Sorafenib as First-Line Treatment for Unresectable Hepatocellular Carcinoma. JAMA Oncology, 9, 1651-1659.
https://doi.org/10.1001/jamaoncol.2023.4003
[21]  Zheng, X., Liu, X., Lei, Y., Wang, G. and Liu, M. (2022) Glypican-3: A Novel and Promising Target for the Treatment of Hepatocellular Carcinoma. Frontiers in Oncology, 12, Article 824208.
https://doi.org/10.3389/fonc.2022.824208
[22]  Liu, H., Xu, Y., Xiang, J., Long, L., Green, S., Yang, Z., et al. (2017) Targeting Alpha-Fetoprotein (AFP)-MHC Complex with CAR T-Cell Therapy for Liver Cancer. Clinical Cancer Research, 23, 478-488.
https://doi.org/10.1158/1078-0432.ccr-16-1203
[23]  Ko, C., Li, C., Wu, M. and Chu, P. (2018) Overexpression of Epithelial Cell Adhesion Molecule as a Predictor of Poor Outcome in Patients with Hepatocellular Carcinoma. Experimental and Therapeutic Medicine, 16, 4810-4816.
https://doi.org/10.3892/etm.2018.6794
[24]  Milone, M.C., Xu, J., Chen, S., Collins, M.A., Zhou, J., Powell, D.J., et al. (2021) Engineering-Enhanced CAR T Cells for Improved Cancer Therapy. Nature Cancer, 2, 780-793.
https://doi.org/10.1038/s43018-021-00241-5
[25]  Chen, C., Wang, Z., Ding, Y. and Qin, Y. (2023) Tumor Microenvironment-Mediated Immune Evasion in Hepatocellular Carcinoma. Frontiers in Immunology, 14, Article 1133308.
https://doi.org/10.3389/fimmu.2023.1133308
[26]  Cappell, K.M. and Kochenderfer, J.N. (2023) Long-Term Outcomes Following CAR T Cell Therapy: What We Know So Far. Nature Reviews Clinical Oncology, 20, 359-371.
https://doi.org/10.1038/s41571-023-00754-1
[27]  Wang, H., Wang, X., Ye, X., Ju, Y., Cao, N., Wang, S., et al. (2022) Nonviral mcDNA-Mediated Bispecific CAR T Cells Kill Tumor Cells in an Experimental Mouse Model of Hepatocellular Carcinoma. BMC Cancer, 22, Article No. 814.
https://doi.org/10.1186/s12885-022-09861-1
[28]  Agarwal, S., Aznar, M.A., Rech, A.J., Good, C.R., Kuramitsu, S., Da, T., et al. (2023) Deletion of the Inhibitory Co-Receptor CTLA-4 Enhances and Invigorates Chimeric Antigen Receptor T Cells. Immunity, 56, 2388-2407.e9.
https://doi.org/10.1016/j.immuni.2023.09.001
[29]  Guo, X., Jiang, H., Shi, B., Zhou, M., Zhang, H., Shi, Z., et al. (2018) Disruption of PD-1 Enhanced the Anti-Tumor Activity of Chimeric Antigen Receptor T Cells against Hepatocellular Carcinoma. Frontiers in Pharmacology, 9, Article 1118.
https://doi.org/10.3389/fphar.2018.01118
[30]  Liu, Y., Di, S., Shi, B., Zhang, H., Wang, Y., Wu, X., et al. (2019) Armored Inducible Expression of IL-12 Enhances Antitumor Activity of Glypican-3-Targeted Chimeric Antigen Receptor-Engineered T Cells in Hepatocellular Carcinoma. The Journal of Immunology, 203, 198-207.
https://doi.org/10.4049/jimmunol.1800033
[31]  Taniguchi, M., Mizuno, S., Yoshikawa, T., Fujinami, N., Sugimoto, M., Kobayashi, S., et al. (2020) Peptide Vaccine as an Adjuvant Therapy for Glypican-3-Positive Hepatocellular Carcinoma Induces Peptide-Specific CTLS and Improves Long Prognosis. Cancer Science, 111, 2747-2759.
https://doi.org/10.1111/cas.14497
[32]  Chen, Y., Huang, A., Gao, M., Yan, Y. and Zhang, W. (2013) Potential Therapeutic Value of Dendritic Cells Loaded with NY-ESO-1 Protein for the Immunotherapy of Advanced Hepatocellular Carcinoma. International Journal of Molecular Medicine, 32, 1366-1372.
https://doi.org/10.3892/ijmm.2013.1510
[33]  Charneau, J., Suzuki, T., Shimomura, M., Fujinami, N. and Nakatsura, T. (2021) Peptide-Based Vaccines for Hepatocellular Carcinoma: A Review of Recent Advances. Journal of Hepatocellular Carcinoma, 8, 1035-1054.
https://doi.org/10.2147/jhc.s291558
[34]  Schumacher, T.N., Scheper, W. and Kvistborg, P. (2019) Cancer Neoantigens. Annual Review of Immunology, 37, 173-200.
https://doi.org/10.1146/annurev-immunol-042617-053402
[35]  Silva, L., Egea, J., Villanueva, L., Ruiz, M., Llopiz, D., Repáraz, D., et al. (2020) Cold-Inducible RNA Binding Protein as a Vaccination Platform to Enhance Immunotherapeutic Responses against Hepatocellular Carcinoma. Cancers, 12, Article 3397.
https://doi.org/10.3390/cancers12113397
[36]  Zhang, Y., Xie, F., Yin, Y., Zhang, Q., Jin, H., Wu, Y., et al. (2021) Immunotherapy of Tumor RNA-Loaded Lipid Nanoparticles against Hepatocellular Carcinoma. International Journal of Nanomedicine, 16, 1553-1564.
https://doi.org/10.2147/ijn.s291421
[37]  Allen, E., Jabouille, A., Rivera, L.B., Lodewijckx, I., Missiaen, R., Steri, V., et al. (2017) Combined Antiangiogenic and Anti-PD-L1 Therapy Stimulates Tumor Immunity through HEV Formation. Science Translational Medicine, 9, 1-13.
https://doi.org/10.1126/scitranslmed.aak9679
[38]  Cheng, A., Qin, S., Ikeda, M., Galle, P.R., Ducreux, M., Kim, T., et al. (2022) Updated Efficacy and Safety Data from IMbrave150: Atezolizumab plus Bevacizumab vs. Sorafenib for Unresectable Hepatocellular Carcinoma. Journal of Hepatology, 76, 862-873.
https://doi.org/10.1016/j.jhep.2021.11.030
[39]  Ren, Z., Xu, J., Bai, Y., Xu, A., Cang, S., Du, C., et al. (2021) Sintilimab Plus a Bevacizumab Biosimilar (IBI305) versus Sorafenib in Unresectable Hepatocellular Carcinoma (ORIENT-32): A Randomized, Open-Label, Phase 2-3 Study. The Lancet Oncology, 22, 977-990.
https://doi.org/10.1016/s1470-2045(21)00252-7
[40]  Finn, R.S., Ikeda, M., Zhu, A.X., Sung, M.W., Baron, A.D., Kudo, M., et al. (2020) Phase IB Study of Lenvatinib Plus Pembrolizumab in Patients with Unresectable Hepatocellular Carcinoma. Journal of Clinical Oncology, 38, 2960-2970.
https://doi.org/10.1200/jco.20.00808
[41]  Xu, J., Shen, J., Gu, S., Zhang, Y., Wu, L., Wu, J., et al. (2021) Camrelizumab in Combination with Apatinib in Patients with Advanced Hepatocellular Carcinoma (RESCUE): A Nonrandomized, Open-Label, Phase II Trial. Clinical Cancer Research, 27, 1003-1011.
https://doi.org/10.1158/1078-0432.ccr-20-2571
[42]  Lu, M., Zhang, X., Gao, X., Sun, S., Wei, X., Hu, X., et al. (2021) Lenvatinib Enhances T Cell Immunity and the Efficacy of Adoptive Chimeric Antigen Receptor-Modified T Cells by Decreasing Myeloid-Derived Suppressor Cells in Cancer. Pharmacological Research, 174, Article 105829.
https://doi.org/10.1016/j.phrs.2021.105829
[43]  Kelley, R.K., Sangro, B., Harris, W., Ikeda, M., Okusaka, T., Kang, Y., et al. (2021) Safety, Efficacy, and Pharmacodynamics of Tremelimumab Plus Durvalumab for Patients with Unresectable Hepatocellular Carcinoma: Randomized Expansion of a Phase I/II Study. Journal of Clinical Oncology, 39, 2991-3001.
https://doi.org/10.1200/jco.20.03555
[44]  Duffy, A.G., Ulahannan, S.V., Makorova-Rusher, O., Rahma, O., Wedemeyer, H., Pratt, D., et al. (2017) Tremelimumab in Combination with Ablation in Patients with Advanced Hepatocellular Carcinoma. Journal of Hepatology, 66, 545-551.
https://doi.org/10.1016/j.jhep.2016.10.029
[45]  Cao, F., Shi, C., Zhang, G., Luo, J., Zheng, J. and Hao, W. (2023) Improved Clinical Outcomes in Advanced Hepatocellular Carcinoma Treated with Transarterial Chemoembolization Plus Atezolizumab and Bevacizumab: A Bicentric Retrospective Study. BMC Cancer, 23, Article No. 873.
https://doi.org/10.1186/s12885-023-11389-x
[46]  Nobuoka, D.,Motomura, Y.,Shirakawa, H., et al. (2012) Radiofrequency Ablation for Hepatocellular Carcinoma Induces Glypican-3 Peptide-Specific Cytotoxic T Lymphocytes. International Journal of Oncology, 40, 63-70.
[47]  Spahn, S., Roessler, D., Pompilia, R., Gabernet, G., Gladstone, B.P., Horger, M., et al. (2020) Clinical and Genetic Tumor Characteristics of Responding and Non-Responding Patients to PD-1 Inhibition in Hepatocellular Carcinoma. Cancers, 12, Article 3830.
https://doi.org/10.3390/cancers12123830
[48]  Dharmapuri, S., Özbek, U., Lin, J., Sung, M., Schwartz, M., Branch, A.D., et al. (2020) Predictive Value of Neutrophil to Lymphocyte Ratio and Platelet to Lymphocyte Ratio in Advanced Hepatocellular Carcinoma Patients Treated with Anti-PD-1 Therapy. Cancer Medicine, 9, 4962-4970.
https://doi.org/10.1002/cam4.3135
[49]  Chung, M., Kim, M., Won, E.J., Lee, Y.J., Yun, Y., Cho, S.B., et al. (2021) Gut Microbiome Composition Can Predict the Response to Nivolumab in Advanced Hepatocellular Carcinoma Patients. World Journal of Gastroenterology, 27, 7340-7349.
https://doi.org/10.3748/wjg.v27.i42.7340
[50]  Mao, J., Wang, D., Long, J., Yang, X., Lin, J., Song, Y., et al. (2021) Gut Microbiome Is Associated with the Clinical Response to Anti-PD-1 Based Immunotherapy in Hepatobiliary Cancers. Journal for Immuno Therapy of Cancer, 9, e003334.
https://doi.org/10.1136/jitc-2021-003334
[51]  Xu, J., Zhang, Y., Jia, R., Yue, C., Chang, L., Liu, R., et al. (2019) Anti-PD-1 Antibody SHR-1210 Combined with Apatinib for Advanced Hepatocellular Carcinoma, Gastric, or Esophagogastric Junction Cancer: An Open-Label, Dose Escalation and Expansion Study. Clinical Cancer Research, 25, 515-523.
https://doi.org/10.1158/1078-0432.ccr-18-2484
[52]  Xu, X., Tan, Y., Qian, Y., Xue, W., Wang, Y., Du, J., et al. (2019) Clinicopathologic and Prognostic Significance of Tumor-Infiltrating CD8+T Cells in Patients with Hepatocellular Carcinoma. Medicine, 98, e13923.
https://doi.org/10.1097/md.0000000000013923
[53]  Zhu, A.X., Abbas, A.R., de Galarreta, M.R., Guan, Y., Lu, S., Koeppen, H., et al. (2022) Molecular Correlates of Clinical Response and Resistance to Atezolizumab in Combination with Bevacizumab in Advanced Hepatocellular Carcinoma. Nature Medicine, 28, 1599-1611.
https://doi.org/10.1038/s41591-022-01868-2

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133