|
Modern Management 2025
基于TOPSIS-GRA法的快递企业动态信用评价模型
|
Abstract:
近十年以来我国快递行业蓬勃发展,快递业务量从91.9亿件到1105.8亿件,但是由于快递企业在我国的发展历史不长,快递企业也面临着丢失、延误、损毁等方面信用问题。本文从快递企业信用出发,利用在线评论数据爬取结合行业标准以及文献资料建立初步信用评价指标体系,再通过主成分分析法依靠模型数据得到最终的快递企业信用评价指标体系,其次,基于诱导密度算子构建静态信用评价模型,再结合TOPSIS-GRA法建立快递企业动态信用评价模型,以实现对快递企业信用风险的度量,进而促进快递企业改善信用问题,以此带动快递行业高质量发展。
In the past decade, China’s express delivery industry has flourished, with the volume of express delivery services increasing from 9.19 billion to 110.58 billion. However, due to the short development history of express delivery companies in China, they also face credit problems such as loss, delay, and damage. This article starts from the credit of express delivery enterprises, uses online comment data crawling combined with industry standards and literature to establish a preliminary credit evaluation index system, and then uses principal component analysis to rely on model data to obtain the final credit evaluation index system of express delivery enterprises. Secondly, based on the induced density operator, a static credit evaluation model is constructed, and then combined with TOPSIS-GRA method to establish a dynamic credit evaluation model of express delivery enterprises, in order to measure the credit risk of express delivery companies, and then promote the improvement of credit problems of express delivery companies, this will drive the high-quality development of the express delivery industry.
[1] | 刘丽坤. 快递企业信用指标体系的建立[J]. 现代经济信息, 2018(28): 342. |
[2] | Doney, P.M. and Cannon, J.P. (1997) An Examination of the Nature of Trust in Buyer-Seller Relationships. Journal of Marketing, 61, 35-51. https://doi.org/10.1177/002224299706100203 |
[3] | 刘梦雨. 信用监管让快递行业行稳致远[J]. 中国信用, 2021(11): 62-66. |
[4] | 张北阳. 上市公司信用风险、公司治理和企业绩效关联研究[D]: [博士学位论文]. 长春: 吉林大学, 2011. |
[5] | 林均跃. 第三代企业信用管理理论及特点[J]. 征信, 2014(1): 28-31. |
[6] | 巴曙松, 何雅婷. 数字经济背景下企业信用管理的数字化变革[J]. 征信, 2023, 41(9): 10-14. |
[7] | Beaver, W.H. (1966) Financial Ratios as Predictors of Failure. Journal of Accounting Research, 4, 71-111. https://doi.org/10.2307/2490171 |
[8] | Hu, Y.C. and Ansell, J. (2007) Measuring Retail Company Performance by Using Credit Scoring Techniques. European Journal of Operational Research, 183, 1595-1606. |
[9] | 王德勇, 陈晓钢. 浅析小微企业信用评价指标体系的构建[J]. 中国商界, 2008(6): 78-81. |
[10] | 秦春艳, 李道波, 王钰, 等. Logistic回归分析方法在中小微企业信用评级中的应用研究[J]. 全国流通经济, 2023(23): 165-168. |
[11] | Odom, M.D. and Sharda, R. (1990). A Neural Network Model for Bankruptcy Prediction. 1990 IJCNN International Joint Conference on Neural Networks, San Diego, 17-21 June 1990, 163-168. https://doi.org/10.1109/ijcnn.1990.137710 |
[12] | 林江鹏, 华良晨, 姜雯. 我国中小企业信用评级质量检验的实证研究——基于因子分析模型和有序Logit模型的分析[J]. 金融理论与实践, 2016(1): 33-41. |
[13] | 高盼. DEA-TOPSIS模型在小微企业信用评价中的应用[J]. 征信, 2021(5): 71-76. |
[14] | 田一擎, 程曦, 冯博靖. 企业信用评级计算模型综述[J]. 数据与计算发展前沿, 2023, 5(4): 139-153. |
[15] | Altman, E.I. and Rijken, H.A. (2004) How Rating Agencies Achieve Rating Stability. Journal of Banking & Finance, 28, 2679-2714. https://doi.org/10.1016/j.jbankfin.2004.06.006 |
[16] | 张莉. 交通运输物流企业诚信评价体系研究[D]: [硕士学位论文]. 郑州: 郑州大学, 2013. |
[17] | 韩嵩. 大数据环境下物流企业信用评价的变革[J]. 中小企业管理与科技(上旬刊), 2017(7): 132-133. |