全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Concepts and Misconceptions in Climate Change Risk Assessment: Considerations for Sea Level Rise and Extreme Precipitation Risk

DOI: 10.4236/gep.2025.131010, PP. 178-214

Keywords: Risk Concept, Risk Misconceptions, Impact, Vulnerability, Climate Change, Sea Level Rise, Extreme Precipitation, Risk Assessment, Risk Ranking

Full-Text   Cite this paper   Add to My Lib

Abstract:

Flood extremes due to sea level rise and extreme precipitation are expected to increase in frequency and intensity. However, despite the need for accurate climate change risk assessment, significant misconceptions in key risk terms, including vulnerability and impact, could lead to risk miscalculations. These misconceptions around risk concepts derive from the lack of risk terms’ standardization and the gaps in an integrated and widely accepted methodology for assessing climate change risks. Risk assessment frameworks should follow the specialties of each element/sector it is applied on and the special features of each climate hazard. Also, risk assessment matrix should not follow specific design settings but it should better follow the needs of each study, so as to optimize the understanding of each risk. Through an extensive literature review, this is the first paper that identifies gaps, inconsistencies and misuses of climate risk concepts and suggests specific systemization and standardization of risk terms definitions. Finally, it develops a climate change risk assessment framework and matrix, focusing on sea level rise and extreme precipitation, which could be widely implemented in risk assessment of all elements at sea level rise and extreme precipitation risk.

References

[1]  Adams J. (1995). Risk (p. 228). Routledge.
[2]  Adger, W. N. (2006). Vulnerability. Global Environmental Change, 16, 268-281.
https://doi.org/10.1016/j.gloenvcha.2006.02.006
[3]  Aerts, J. C. J. H., Botzen, W. J. W., Emanuel, K., Lin, N., de Moel, H., & Michel-Kerjan, E. O. (2014). Evaluating Flood Resilience Strategies for Coastal Megacities. Science, 344, 473-475.
https://doi.org/10.1126/science.1248222
[4]  Al-Amin, A. Q., Nagy, G. J., Masud, M. M., Filho, W. L., & Doberstein, B. (2019). Evaluating the Impacts of Climate Disasters and the Integration of Adaptive Flood Risk Management. International Journal of Disaster Risk Reduction, 39, Article ID: 101241.
https://doi.org/10.1016/j.ijdrr.2019.101241
[5]  Alexander, D. (2002). Principles of Emergency Planning and Management. Terra Pub-lishing.
[6]  Antzoulatos, G., Kouloglou, I., Bakratsas, M., Moumtzidou, A., Gialampoukidis, I., Karakostas, A. et al. (2022). Flood Hazard and Risk Mapping by Applying an Explainable Machine Learning Framework Using Satellite Imagery and GIS Data. Sustainability, 14, Article 3251.
https://doi.org/10.3390/su14063251
[7]  Arnall, A. (2019). Resettlement as Climate Change Adaptation: What Can Be Learned from State-Led Relocation in Rural Africa and Asia? Climate and Development, 11, 253-263.
https://doi.org/10.1080/17565529.2018.1442799
[8]  Aven, T. (2012). The Risk Concept—Historical and Recent Development Trends. Reliability Engineering & System Safety, 99, 33-44.
https://doi.org/10.1016/j.ress.2011.11.006
[9]  Baker, G. H. (2005). A Vulnerability Assessment Methodology for Critical Infrastructure Sites. In DHS Symposium: R&D Partnerships in Homeland Security, Boston, Massachu-setts.
[10]  Bankoff, G., Frerks, G., & Hilhorst, D. (2004). Mapping Vulnerability, Disasters, Development and People. Earthscan Publishers.
[11]  Barnett, J., & O’Neill, S. (2010). Maladaptation. Global Environmental Change, 20, 211-213.
https://doi.org/10.1016/j.gloenvcha.2009.11.004
[12]  Bednar-Friedl, B., Wolkinger, B., König, M., Bachner, G., Formayer, H., Offenthaler, I. et al. (2015). Transport. In K. Steininger, M. König, B. Bednar-Friedl, L. Kranzl, W. Loibl, & F. Prettenthaler (Eds.), Economic Evaluation of Climate Change Impacts (pp. 279-300). Springer International Publishing.
https://doi.org/10.1007/978-3-319-12457-5_15
[13]  Benke, K. K., Hamilton, A. J., & Lowell, K. E. (2007). Uncertainty Analysis and Risk Assessment in the Management of Environmental Resources. Australasian Journal of Environmental Management, 14, 243-249.
https://doi.org/10.1080/14486563.2007.10648722
[14]  Bentivoglio, R., Isufi, E., Jonkman, S. B., & Taormina, R. (2022). Deep Learning Methods for Flood Mapping: A Review of Existing Applications and Future Research Directions. Hydrology and Earth Systems Science, 26, 4345-4378.
https://doi.org/10.5194/hess-2022-83
[15]  Birkmann, J. (2006). Measuring Vulnerability to Promote Disaster-Resilient Societies: Conceptual Frameworks and Definitions. In J. Birkmann Ed., Measuring Vulnerability to Natural Hazards. Towards Disaster Resilient Societies (pp. 9-54). United Nations University Press.
[16]  Birkmann, J. (2007). Risk and Vulnerability Indicators at Different Scales: Applicability, Usefulness and Policy Implications. Environmental Hazards, 7, 20-31.
https://doi.org/10.1016/j.envhaz.2007.04.002
[17]  Birkmann, J. (2011). First-and Second-Order Adaptation to Natural Hazards and Extreme Events in the Context of Climate Change. Natural Hazards, 58, 811-840.
https://doi.org/10.1007/s11069-011-9806-8
[18]  Birkmann, J., & Fernando, N. (2008). Measuring Revealed and Emergent Vulnerabilities of Coastal Communities to Tsunami in Sri Lanka. Disasters, 32, 82-105.
https://doi.org/10.1111/j.1467-7717.2007.01028.x
[19]  Birkmann, J., Cardona, O. D., Carreño, M. L., Barbat, A. H., Pelling, M., Schneiderbauer, S. et al. (2013). Framing Vulnerability, Risk and Societal Responses: The MOVE Framework. Natural Hazards, 67, 193-211.
https://doi.org/10.1007/s11069-013-0558-5
[20]  Blaikie, P. et al. (2014). At Risk: Natural Hazards, Peoples Vulnerability and Disasters (p. 284). Routledge.
[21]  Boruff, B. J., Emrich, C., & Cutter, S. L. (2005). Erosion Hazard Vulnerability of US Coastal Counties. Journal of Coastal Research, 215, 932-942.
https://doi.org/10.2112/04-0172.1
[22]  Bosom, E., & Jiménez, J. A. (2011). Probabilistic Coastal Vulnerability Assessment to Storms at Regional Scale—Application to Catalan Beaches (NW Mediterranean). Natural Hazards and Earth System Sciences, 11, 475-484.
https://doi.org/10.5194/nhess-11-475-2011
[23]  Bowyer, P., Bender, S., Rechid, D., & Schaller, M. (2014). Adapting to Climate Change: Methods and Tools for Climate Risk Management (124 p.). Climate Service Center.
[24]  Brenkert, A. L., & Malone, E. L. (2005). Modeling Vulnerability and Resilience to Climate Change: A Case Study of India and Indian States. Climatic Change, 72, 57-102.
https://doi.org/10.1007/s10584-005-5930-3
[25]  Brooks (2003). Vulnerability, Risk and Adaptation: A Conceptual Framework, Tyndal Centre Working Paper No. 38. Tyndal Centre for Climate Research and Centre for Social and Economic Research on the Global Environment (CSERGE).
[26]  Brown, J. R., Moise, A. F., & Colman, R. A. (2017). Projected Increases in Daily to Decadal Variability of Asian-Australian Monsoon Rainfall. Geophysical Research Letters, 44, 5683-5690.
https://doi.org/10.1002/2017gl073217
[27]  Brown, P., Daigneault, A. J., Tjernström, E., & Zou, W. (2018). Natural Disasters, Social Protection, and Risk Perceptions. World Development, 104, 310-325.
https://doi.org/10.1016/j.worlddev.2017.12.002
[28]  Brown, V. J. (2014). Risk Perception: It’s Personal. Environmental Health Perspectives, 122, A276-A279.
https://doi.org/10.1289/ehp.122-a276
[29]  Bruneau, M., Chang, S. E., Eguchi, R. T., Lee, G. C., O’Rourke, T. D., Reinhorn, A. M. et al. (2003). A Framework to Quantitatively Assess and Enhance the Seismic Resilience of Communities. Earthquake Spectra, 19, 733-752.
https://doi.org/10.1193/1.1623497
[30]  Buckle, P., Graham, M., & Smale, S. (2001). Assessment of Personal & Community Resilience & Vulnerability. Report: EMA Project 15/2000.
[31]  Campbell, S. (2006). Risk and the Subjectivity of Preference. Journal of Risk Research, 9, 225-242.
https://doi.org/10.1080/13669870600603147
[32]  Cardona, O. D., & Carreño, M. L. (2011). Updating the Indicators of Disaster Risk and Risk Management for the Americas. Journal of Integrated Disaster Risk Management, 1, 27-47.
https://doi.org/10.5595/idrim.2011.0014
[33]  Chapman, C., & Ward, W. (2003). Project Risk Management Processes, Techniques and Insights (2nd ed.). John Wiley and Sons Ltd.
[34]  Chaves, J. M., & De Cola, T. (2017). Public Warning Applications: Requirements and Examples. In D. Câmara, & N. Nikaein (Eds.), Wireless Public Safety Networks 3 (pp. 1-18). Elsevier.
https://doi.org/10.1016/b978-1-78548-053-9.50001-9
[35]  Chen, M., Hong, Y., Jin, X., Guo, C., Zhao, X., Liu, N. et al. (2023). Ranking the Risks of Eighty Pharmaceuticals in Surface Water of a Megacity: A Multilevel Optimization Strategy. Science of the Total Environment, 878, Article ID: 163184.
https://doi.org/10.1016/j.scitotenv.2023.163184
[36]  Chen, Y., Lin, H., Liou, J., Cheng, C., & Chen, Y. (2022). Assessment of Flood Risk Map under Climate Change RCP8.5 Scenarios in Taiwan Region. Water, 14, Article 207.
https://doi.org/10.3390/w14020207
[37]  Christensen, F. M., Andersen, O., Duijm, N. J., & Harremoës, P. (2003). Risk Terminology—A Platform for Common Understanding and Better Communication. Journal of Hazardous Materials, 103, 181-203.
https://doi.org/10.1016/s0304-3894(03)00039-6
[38]  Coleman, M. E., & Marks, H. M. (1999). Qualitative and quantitative risk assessment. Food Control, 10, 289-297.
https://doi.org/10.1016/s0956-7135(99)00052-3
[39]  Coumou, D., & Rahmstorf, S. (2012). A Decade of Weather Extremes. Nature Climate Change, 2, 491-496.
https://doi.org/10.1038/nclimate1452
[40]  Cruz-Bello, G. M., & Alfie-Cohen, M. (2022). Capturing Flood Community Perceptions for Social Vulnerability Reduction and Risk Management Planning. Environmental Science & Policy, 132, 190-197.
https://doi.org/10.1016/j.envsci.2022.02.029
[41]  Cutter, S. L., Boruff, B. J., & Shirley, W. L. (2003). Social Vulnerability to Environmental Hazards*. Social Science Quarterly, 84, 242-261.
https://doi.org/10.1111/1540-6237.8402002
[42]  Dewan, A. M. (2013). Floods in a Megacity: Geospatial Techniques in Assessing Hazards, Risk and Vulnerability. Springer.
[43]  Di Risio, M., Bruschi, A., Lisi, I., Pesarino, V., & Pasquali, D. (2017). Comparative Analysis of Coastal Flooding Vulnerability and Hazard Assessment at National Scale. Journal of Marine Science and Engineering, 5, Article 51.
https://doi.org/10.3390/jmse5040051
[44]  Dong, Q., & Cooper, O. (2016). An Orders-Of-Magnitude AHP Supply Chain Risk Assessment Framework. International Journal of Production Economics, 182, 144-156.
https://doi.org/10.1016/j.ijpe.2016.08.021
[45]  Ezer, T. (2023). Sea Level Acceleration and Variability in the Chesapeake Bay: Past Trends, Future Projections, and Spatial Variations within the Bay. Ocean Dynamics, 73, 23-34.
https://doi.org/10.1007/s10236-022-01536-6
[46]  Felio, G. (2015). Tools to Evaluate the Vulnerability and Adaptation of Infrastructure to Climate Change. In Proceedings, Annual Conference—Canadian Society for Civil Engineering (pp. 742-751).
[47]  Folke, C., Carpenter, S., Elmqvist, T., Gunderson, L., Holling, C. S., & Walker, B. (2002). Resilience and Sustainable Development: Building Adaptive Capacity in a World of Transformations. AMBIO: A Journal of the Human Environment, 31, 437-440.
https://doi.org/10.1579/0044-7447-31.5.437
[48]  Forzieri, G., Bianchi, A., Silva, F. B. e., Marin Herrera, M. A., Leblois, A., Lavalle, C. et al. (2018). Escalating Impacts of Climate Extremes on Critical Infrastructures in Europe. Global Environmental Change, 48, 97-107.
https://doi.org/10.1016/j.gloenvcha.2017.11.007
[49]  Füssel, H., & Klein, R. J. T. (2006). Climate Change Vulnerability Assessments: An Evolution of Conceptual Thinking. Climatic Change, 75, 301-329.
https://doi.org/10.1007/s10584-006-0329-3
[50]  Gangwal, U., & Dong, S. (2022). Critical Facility Accessibility Rapid Failure Early-Warning Detection and Redundancy Mapping in Urban Flooding. Reliability Engineering & System Safety, 224, Article ID: 108555.
https://doi.org/10.1016/j.ress.2022.108555
[51]  Garner, A. J., Weiss, J. L., Parris, A., Kopp, R. E., Horton, R. M., Overpeck, J. T. et al. (2018). Evolution of 21st Century Sea Level Rise Projections. Earths Future, 6, 1603-1615.
https://doi.org/10.1029/2018ef000991
[52]  Gobbens, R. J. J., Luijkx, K. G., Wijnen-Sponselee, M. T., & Schols, J. M. G. A. (2010). In Search of an Integral Conceptual Definition of Frailty: Opinions of Experts. Journal of the American Medical Directors Association, 11, 338-343.
https://doi.org/10.1016/j.jamda.2009.09.015
[53]  Hallegatte, S., & Dumas, P. (2009). Can Natural Disasters Have Positive Consequences? Investigating the Role of Embodied Technical Change. Ecological Economics, 68, 777-786.
https://doi.org/10.1016/j.ecolecon.2008.06.011
[54]  Hallegatte, S., Henriet, F., & Corfee-Morlot, J. (2008). The Economics of Climate Change Impacts and Policy Benefits at City Scale: A Conceptual Framework. OECD Environment Working Papers, No. 4. OECD Publishing.
[55]  Hawcroft, M., Walsh, E., Hodges, K., & Zappa, G. (2018). Significantly Increased Extreme Precipitation Expected in Europe and North America from Extratropical Cyclones. Environmental Research Letters, 13, Article ID: 124006.
https://doi.org/10.1088/1748-9326/aaed59
[56]  Hughes, J. F., & Healy, K. (2014). Measuring the Resilience of Transport Infrastructure (p. 82). NZ Transport Agency Research Report.
[57]  Ighile, E. H., Shirakawa, H., & Tanikawa, H. (2022). Application of GIS and Machine Learning to Predict Flood Areas in Nigeria. Sustainability, 14, Article 5039.
https://doi.org/10.3390/su14095039
[58]  Imai, K. S., Gaiha, R., & Kang, W. (2011). Vulnerability and Poverty Dynamics in Vietnam. Applied Economics, 43, 3603-3618.
https://doi.org/10.1080/00036841003670754
[59]  Intergovernmental Panel for Climate Change (IPCC) (2001). Climate Change 2001: Impacts, Adaptation, and Vulnerability. Contribution of Working Group II to the Third Assessment Report of the Intergovernmental Panel on Climate Change. In J. J. McCathy, O. F. Canziani, N. A. Leary, D. J. Dokken, & K. S. White (Eds.), Cambridge University Press.
[60]  Intergovernmental Panel for Climate Change (IPCC) (2012). Summary for Policymakers. In C. B. Field, V. Barros, T. F. Stocker, D. Qin, D. J. Dokken, K. L. Ebi, M. D. Mastrandrea, K. J. Mach, G. K. Plattner, S. K. Allen, M. Tignor, & P. M. Midgley (Eds.), Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation. A Special Report of Working Groups I and II of the Intergovernmental Panel on Climate Change (pp. 1-19). Cambridge University Press.
[61]  Intergovernmental Panel for Climate Change (IPCC) (2013). Climate Change 2013: The Physical Science Basis. In T. F. Stocker, D. Qin, G. K. Plattner, M. Tignor, S. K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex, & P. M. Midgley (Eds.), Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (p. 1535). Cambridge University Press.
[62]  Intergovernmental Panel for Climate Change (IPCC) (2014). Climate Change 2014: Synthesis Report. In Core Writing Team, R. K. Pachauri, & L. A. Meyer (Eds.), Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (p. 151). IPCC.
[63]  Intergovernmental Panel for Climate Change (IPCC) (2018). Summary for Policymakers. In V. Masson-Delmotte, P. Zhai, H. O. Portner, D. Roberts, J. Skea, P. R. Shukla, A. Pirani, W. Moufouma-Okia, C. Péan, R. Pidcock, S. Connors, J. B. R. Matthews, Y. Chen, X. Zhou, M. I. Gomis, E. Lonnoy, T. Maycock, M. Tignor, & T. Waterfield (Eds.), Global Warming of 1.5˚C. An IPCC Special Report on the Impacts of Global Warming of 1.5˚C above Pre-Industrial Levels and Related Global Greenhouse Gas Emission Pathways, in the Context of Strengthening the Global Response to the Threat of Climate Change, Sustainable Development, and Efforts to Eradicate Poverty (pp. 3-24). Cambridge University Press.
https://doi.org/10.1017/9781009157940.001
[64]  Intergovernmental Panel for Climate Change (IPCC) (2021). Climate Change Information for Regional Impact and for Risk Assessment. In V. Masson-Delmotte, P. Zhai, A. Pirani, S. L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M. I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J. B. R. Matthews, T. K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, & B. Zhou (Eds.), Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (pp. 1767-1926). Cambridge University Press.
[65]  Intergovernmental Panel for Climate Change (IPCC) (2022). Summary for Policymakers. In: H. O. Pörtner, D. C. Roberts, M. Tignor, E. S. Poloczanska, K. Mintenbeck, A. Alegría, M. Craig, S. Langsdorf, S. Löschke, V. Möller, A. Okem, & B. Rama (Eds.), Climate Change 2022: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (pp. 3-33). Cambridge University Press.
[66]  Intergovernmental Panel for Climate Change (IPCC) (2023). Summary for Policymakers. In [Core Writing Team, H. Lee, & J. Romero (Eds.), Climate Change 2023: Synthesis Report. Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (pp. 1-34). IPCC.
[67]  International Organization for Standardization (ISO) (2009). ISO 31000. Risk Management-Principles and Guidelines.
[68]  ISO Glossary 31000 (2018).
https://www.iso.org/obp/ui/#iso:std:iso:31000:ed-2:v1:en
[69]  Jones, R. (2003). Managing Climate Change Risks. ENV/EPOC/GSP(2003)22/FINAL Working Party on Global and Structural Policies, OECD Workshop on the Benefits of Climate Policy: Improving Information for Policy Makers (p. 37).
[70]  Jones, R. N., & Boer, R. (2003). Assessing Current Climate Risks. In B. Lim, I. Carter, & S. Al Huq (Eds.), Adaptation Policy Framework, Technical Paper 4. United Nations Development Programme.
[71]  Kirshen, P., Ruth, M., & Anderson, B. (2005). Integrated Impacts of Climate Change on and Adaptation Strategies for Metropolitan Areas: A Case Study of Metropolitan Boston. In Impacts of Global Climate Change (pp. 1-8). American Society of Civil Engineers.
https://doi.org/10.1061/40792(173)72
[72]  Kirshen, P., Wake, C., Huber, M., Knuuti, K., & Stampone, M. (2014). Sea-Level Rise, Storm Surges, and Extreme Precipitation in Coastal New Hampshire-Analysis of Past and Projected Trends. The Sustainability Institute of the University of New Hampshire
[73]  Knemeyer, A. M., Zinn, W., & Eroglu, C. (2009). Proactive Planning for Catastrophic Events in Supply Chains. Journal of Operations Management, 27, 141-153.
https://doi.org/10.1016/j.jom.2008.06.002
[74]  Knox, R. L., Wohl, E. E., & Morrison, R. R. (2022). Levees Don’t Protect, They Disconnect: A Critical Review of How Artificial Levees Impact Floodplain Functions. Science of the Total Environment, 837, Article ID: 155773.
https://doi.org/10.1016/j.scitotenv.2022.155773
[75]  Knutson, T., Camargo, S. J., Chan, J. C. L., Emanuel, K., Ho, C.-H., Kossin, J., Mohapatra, M., Satoh, M., Sugi, M., Walsh, K., & Wu, L. (2020). Tropical Cyclones and Climate Change Assessment Part II: Projected Response to Anthropogenic Warming. Bulletin of the American Meteorological Society, 101, E303-W322.
https://doi.org/10.1175/BAMS-D-18-0194.1
[76]  Koliokosta (2022). Geospatial Assessment of Transport Infrastructure Vulnerability to Flooding Events. In Proceedings of the International Conference on Natural Hazards and Infrastructure International 3rd Conference on Natural Hazards and Infrastructure. ICONHIC.
[77]  Koliokosta, E. (2017). Publications of Climate Change Impact on Transport Infrastructure. In 96th Annual Meeting of the Transportation Research Board. The National Academies of Sciences, Engineering, and Medicine Washington, DC.
[78]  Koliokosta, E. (2023a). Return Periods in Assessing Climate Change Risks: Uses and Misuses. In 16th International Conference on Meteorology, Climatology and Atmospheric Physics—COMECAP 2023 (p. 75). MDPI.
https://doi.org/10.3390/environsciproc2023026075
[79]  Koliokosta, E. (2023b). Impact Assessment of Climate Change on Public Health: A Global Perspective. In 16th International Conference on Meteorology, Climatology and Atmospheric Physics—COMECAP 2023 (pp. 68). MDPI.
https://doi.org/10.3390/environsciproc2023026068
[80]  Koliokosta, E. (2023c). Flood Vulnerability Assessment Using Satellite Imagery Data. Journal of Geoscience and Environment Protection, 11, 1-12.
https://doi.org/10.4236/gep.2023.1112001
[81]  Kontogianni, A., Tourkolias, C. H., Damigos, D., & Skourtos, M. (2014). Assessing Sea Level Rise Costs and Adaptation Benefits under Uncertainty in Greece. Environmental Science & Policy, 37, 61-78.
https://doi.org/10.1016/j.envsci.2013.08.006
[82]  Kostopoulou, E., & Jones, P. D. (2005). Assessment of Climate Extremes in the Eastern Mediterranean. Meteorology and Atmospheric Physics, 89, 69-85.
https://doi.org/10.1007/s00703-005-0122-2
[83]  Kron, W. (2002). Flood Risk = Hazard Exposure Vulnerability. Science Press.
[84]  Lavell, A., Oppenheimer, M., Diop, C., Hess, J., Lempert, R., Li, J. et al. (2012). Climate Change: New Dimensions in Disaster Risk, Exposure, Vulnerability, and Resilience. In C. B. Field, V. Barros, T. F. Stocker, D. Qin, D. J. Dokken, K. L. Ebi, M. D. Mastrandrea, K. J. Mach, G. K. Plattner, S. K. Allen, M. Tignor, & P. M. Midgley (Eds.), Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation (pp. 25-64). Cambridge University Press.
https://doi.org/10.1017/cbo9781139177245.004
[85]  Le Treut, H., Somerville, R., Cubasch, U., Ding, Y., Mauritzen, C., Mokssit, A., Peterson, T., & Prather, M. (2007). Historical Overview of Climate Change. In S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis, K. B. Averyt, M. Tignor, & H. L. Miller (Eds.), Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press.
[86]  Lean, J. L. (2010). Cycles and Trends in Solar Irradiance and Climate. WIREs Climate Change, 1, 111-122.
https://doi.org/10.1002/wcc.18
[87]  Lee, E., Lee, Y., Joo, J., Jung, D., & Kim, J. (2016). Flood Reduction in Urban Drainage Systems: Cooperative Operation of Centralized and Decentralized Reservoirs. Water, 8, Article 469.
https://doi.org/10.3390/w8100469
[88]  López Royo, M., Ranasinghe, R., & Jiménez, J. A. (2016). A Rapid, Low-Cost Approach to Coastal Vulnerability Assessment at a National Level. Journal of Coastal Research, 320, 932-945.
https://doi.org/10.2112/jcoastres-d-14-00217.1
[89]  Magnan, A. K., Oppenheimer, M., Garschagen, M., Buchanan, M. K., Duvat, V. K. E., Forbes, D. L. et al. (2022). Sea Level Rise Risks and Societal Adaptation Benefits in Low-Lying Coastal Areas. Scientific Reports, 12, Article No. 10677.
https://doi.org/10.1038/s41598-022-14303-w
[90]  Malone, E. L. (2009). Vulnerability and Resilience in the Face of Climate Change: Current Research and Needs for Population Information. Batelle Memorial Institute.
[91]  Marcos, M., Rohmer, J., Vousdoukas, M. I., Mentaschi, L., Le Cozannet, G., & Amores, A. (2019). Increased Extreme Coastal Water Levels Due to the Combined Action of Storm Surges and Wind Waves. Geophysical Research Letters, 46, 4356-4364.
https://doi.org/10.1029/2019gl082599
[92]  Mastrandrea, M. D., Field, C. B., Stocker, T. F., Edenhofer, O., Ebi, K. L., Frame, D. J., Held, H., Kriegler, E., Mach, K. J., Matschoss, P. R., Plattner, G. K., Yohe, G. W., & Zwiers, F. W. (2010). Guidance Note for Lead Authors of the IPCC Fifth Assessment Report on Consistent Treatment of Uncertainties. Intergovernmental Panel on Climate Change (IPCC).
[93]  Mechanic, D., & Tanner, J. (2007). Vulnerable People, Groups, and Populations: Societal View. Health Affairs, 26, 1220-1230.
https://doi.org/10.1377/hlthaff.26.5.1220
[94]  Merz, B., Thieken, A. H., & Gocht, M. (2007). Flood Risk Mapping at the Local Scale: Concepts and Challenges. In S. Begum, M. J. F. Stive, & J. W. Hall, (Eds.), Flood Risk Management in Europe (pp. 231-251). Springer Netherlands.
https://doi.org/10.1007/978-1-4020-4200-3_13
[95]  Mirza, M. (2003). Climate Change and Extreme Weather Events: Can Developing Countries Adapt? Climate Policy, 3, 233-248.
https://doi.org/10.1016/s1469-3062(03)00052-4
[96]  Moss, R., Brenkert, A., & Malone, E. (2001). Vulnerability to Climate Change. A Quantitative Approach. Pacific Northwest National Laboratory.
[97]  Muñoz, D. F., Muñoz, P., Moftakhari, H., & Moradkhani, H. (2021). From Local to Regional Compound Flood Mapping with Deep Learning and Data Fusion Techniques. Science of the Total Environment, 782, Article ID: 146927.
https://doi.org/10.1016/j.scitotenv.2021.146927
[98]  Myhre, G., Shindell, D., Bréon, F. M., Collins, W., Fuglestvedt, J., Huang, J., Koch, D., Lamarque, J. F., Lee, D., Mendoza, B., Nakajima, T., Robock, A., Stephens, G., Takemura, T., & Zhang, H. (2013). Anthropogenic and Natural Radiative Forcing. In T. F. Stocker, D. Qin, G. K. Plattner, M. Tignor, S. K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex, & P. M. Midgley (Eds.), Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press.
[99]  Nateghi, R., Bricker, J. D., Guikema, S. D., & Bessho, A. (2016). Statistical Analysis of the Effectiveness of Seawalls and Coastal Forests in Mitigating Tsunami Impacts in Iwate and Miyagi Prefectures. PLOS ONE, 11, e0158375.
https://doi.org/10.1371/journal.pone.0158375
[100]  Nathan, R., Whyler, J., & Wilson, P. (2021). Risk of Harm to Others: Subjectivity and Meaning of Risk in Mental Health Practice. Journal of Risk Research, 24, 1228-1238.
https://doi.org/10.1080/13669877.2020.1819389
[101]  Neale, T., & Weir, J. K. (2015). Navigating Scientific Uncertainty in Wildfire and Flood Risk Mitigation: A Qualitative Review. International Journal of Disaster Risk Reduction, 13, 255-265.
https://doi.org/10.1016/j.ijdrr.2015.06.010
[102]  Nicholls, R. J., Hanson, S., Herweijer, C., Patmore, N., Hallegatte, S., Corfee-Morlot, J., Chateau, J., & Muir-Wood, R. (2008). Ranking Port Cities with High Exposure and Vulnerability to Climate Extremes: Exposure Estimates. OECD Publishing.
http://dx.doi.org/10.1787/011766488208
[103]  Nitkin, D., Foster, R., & Medalye, J. (2009). Cases Studies & Tools: A Systematic Review of the Literature on Business Adaptation to Climate Change 3 of 4. Network for Business Sustainability.
[104]  Nohrstedt, D., Hileman, J., Mazzoleni, M., Di Baldassarre, G., & Parker, C. F. (2022). Exploring Disaster Impacts on Adaptation Actions in 549 Cities Worldwide. Nature Communications, 13, Article No. 3360.
https://doi.org/10.1038/s41467-022-31059-z
[105]  Ohtsuki, K., Itsukushima, R., & Sato, T. (2022). Feasibility of Traditional Open Levee System for River Flood Mitigation in Japan. Water, 14, Article 1343.
https://doi.org/10.3390/w14091343
[106]  Omena Monte, B. E., Goldenfum, J. A., Michel, G. P., & Cavalcanti, J. R. D. A. (2021). Terminology of Natural Hazards and Disasters: A Review and the Case of Brazil. International Journal of Disaster Risk Reduction, 52, Article ID: 101970.
https://doi.org/10.1016/j.ijdrr.2020.101970
[107]  Padli, J., Habibullah, M. S., & Baharom, A. H. (2018). The Impact of Human Development on Natural Disaster Fatalities and Damage: Panel Data Evidence. Economic Research-Ekonomska Istraživanja, 31, 1557-1573.
https://doi.org/10.1080/1331677x.2018.1504689
[108]  Perera et al. (2019). Flood Early Warning Systems: A Review of Benefits, Challenges and Prospects. UNU-INWEH Report Series, Issue 08. United Nations University Institute for Water, Environment and Health, Hamilton, Canada.
http://inweh.unu.edu/publications/
[109]  Piadeh, F., Behzadian, K., & Alani, A. M. (2022). A Critical Review of Real-Time Modelling of Flood Forecasting in Urban Drainage Systems. Journal of Hydrology, 607, Article ID: 127476.
https://doi.org/10.1016/j.jhydrol.2022.127476
[110]  Proag, V. (2014). The Concept of Vulnerability and Resilience. Procedia Economics and Finance, 18, 369-376.
https://doi.org/10.1016/s2212-5671(14)00952-6
[111]  Qiang, Y., He, J., Xiao, T., Lu, W., Li, J., & Zhang, L. (2021). Coastal Town Flooding Upon Compound Rainfall-Wave Overtopping-Storm Surge during Extreme Tropical Cyclones in Hong Kong. Journal of Hydrology: Regional Studies, 37, Article ID: 100890.
https://doi.org/10.1016/j.ejrh.2021.100890
[112]  Renner, B., Gamp, M., Schmälzle, R., & Schupp, H. T. (2015). Health Risk Perception. In J. D. Wright (Ed.), International Encyclopedia of the Social & Behavioral Sciences (pp. 702-709). Elsevier.
https://doi.org/10.1016/b978-0-08-097086-8.14138-8
[113]  Resio, D. T., & Irish, J. L. (2015). Tropical Cyclone Storm Surge Risk. Current Climate Change Reports, 1, 74-84.
https://doi.org/10.1007/s40641-015-0011-9
[114]  Rezende, O. M., Ribeiro da Cruz de Franco, A. B., Beleño de Oliveira, A. K., Miranda, F. M., Pitzer Jacob, A. C., Martins de Sousa, M. et al. (2020). Mapping the Flood Risk to Socioeconomic Recovery Capacity through a Multicriteria Index. Journal of Cleaner Production, 255, Article ID: 120251.
https://doi.org/10.1016/j.jclepro.2020.120251
[115]  Rose, A., & Krausmann, E. (2013). An Economic Framework for the Development of a Resilience Index for Business Recovery. International Journal of Disaster Risk Reduction, 5, 73-83.
https://doi.org/10.1016/j.ijdrr.2013.08.003
[116]  Sayers, P. B., Gouldby, B. P., Simm, J. D., Meadowcroft, I., & Hall, J. (2003). Risk, Performance and Uncertainty in Flood and Coastal Defence—A Review. R&D Technical Report FD2302/TR1, Defra/Environment Agency Flood and Coastal Defence R&D Pro-gramme, PB No.11836 2003.
[117]  Schär, C., Ban, N., Fischer, E. M., Rajczak, J., Schmidli, J., Frei, C. et al. (2016). Percentile Indices for Assessing Changes in Heavy Precipitation Events. Climatic Change, 137, 201-216.
https://doi.org/10.1007/s10584-016-1669-2
[118]  Schwalm, C. R., Glendon, S., & Duffy, P. B. (2020). RCP8.5 Tracks Cumulative CO2 Emissions. Proceedings of the National Academy of Sciences of the United States of America, 117, 19656-19657.
https://doi.org/10.1073/pnas.2007117117
[119]  Serre, D., Douvinet, J., Heinzlef, C., & Daniel-Lacombe, E. (2017). Coping Strategies in Dike Protected Areas. In F. Vinet (Ed.), Floods (pp. 45-57). Elsevier.
https://doi.org/10.1016/b978-1-78548-269-4.50004-4
[120]  Simmons, D. C., Corbane, C., Menoni, S., Schneiderbauer, S., & Zschau, J. (2017). Understanding Disaster Risk: Risk Assessment Methodologies and Examples. In K. Poljanšek, M. Marín Ferrer, T. De Groeve, & I. Clark (Eds.), Science for Disaster Risk Management 2017: Knowing Better and Losing Less. EUR 28034 EN, Publications Office of the European Union, Luxembourg, Chapter 2.
[121]  Skilodimou, H. D., Bathrellos, G. D., & Alexakis, D. E. (2021). Flood Hazard Assessment Mapping in Burned and Urban Areas. Sustainability, 13, Article 4455.
https://doi.org/10.3390/su13084455
[122]  Smith, K. R., Woodward, A., Campbell-Lendrum, D., Chadee, D. D., Honda, Y., Liu, Q., Olwoch, J. M., Revich, B., & Sauerborn, R. (2014). Human Health: Impacts, Adaptation, and Co-Benefits. In C. B. Field, V. R. Barros, et al. (Eds.), Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (pp. 709-754). Cambridge University Press.
[123]  Sterr, H. (2008). Assessment of Vulnerability and Adaptation to Sea-Level Rise for the Coastal Zone of Germany. Journal of Coastal Research, 242, 380-393.
https://doi.org/10.2112/07a-0011.1
[124]  Swami, D., & Parthasarathy, D. (2021). Dynamics of Exposure, Sensitivity, Adaptive Capacity and Agricultural Vulnerability at District Scale for Maharashtra, India. Ecological Indicators, 121, Article ID: 107206.
https://doi.org/10.1016/j.ecolind.2020.107206
[125]  Tadashi, N., & Chutaporn, A. (2023). Evidence-based Disaster Risk Assessment in Southeast Asian Countries. Natural Hazards Research, 3, 295-304.
https://doi.org/10.1016/j.nhres.2023.04.001
[126]  Taubenböck, H., Post, J., Roth, A., Zosseder, K., Strunz, G., & Dech, S. (2008). A Conceptual Vulnerability and Risk Framework as Outline to Identify Capabilities of Remote Sensing. Natural Hazards and Earth System Sciences, 8, 409-420.
https://doi.org/10.5194/nhess-8-409-2008
[127]  Taylor, J. R. (1997). An Introduction to Error Analysis: The Study of Uncertainties in Physical Measurements (2nd ed.). University Science Books.
[128]  Thieu Quang, T., & Nguyen Van, T. (2014). Numerical Study of Wave Overtopping on Sea-Dikes with Crown-Walls. Journal of Hydro-environment Research, 8, 367-382.
https://doi.org/10.1016/j.jher.2014.01.003
[129]  UN General Assembly (UNGA) (2016). Report of the Open-Ended Intergovernmental Expert Working Group on Indicators and Terminology Relating to Disaster Risk Reduction, A/71/644, 16-21184 18 /41 (p. 46).
[130]  UNISDR (2004). Living with Risk: A Global Review of Disaster Reduction Initiatives. Vol. 1 (p. 430). United Nations Office for Disaster Risk Reduction (UNISDR).
[131]  UNISDR (2009). Reducing Disaster Risk through Science: Issues and Actions. Full Report of the Scientific and Technical Committee 2009 (p. 23). United Nations International Strategy for Disaster Reduction (UNISDR).
[132]  Vangelis, H., Zotou, I., Kourtis, I. M., Bellos, V., & Tsihrintzis, V. A. (2022). Relationship of Rainfall and Flood Return Periods through Hydrologic and Hydraulic Modeling. Water, 14, Article 3618.
https://doi.org/10.3390/w14223618
[133]  Villarini, G., & Denniston, R. F. (2016). Contribution of Tropical Cyclones to Extreme Rainfall in Australia. International Journal of Climatology, 36, 1019-1025.
https://doi.org/10.1002/joc.4393
[134]  Voice, M., Harvey, N., & Walsh, K. (2006). Vulnerability to Climate Change of Australias Coastal Zone: Analysis of Gaps in Methods, Data and System Thresholds. Report to the Australian Greenhouse Office.
[135]  Voskaki, A., Budd, T., & Mason, K. (2023). The Impact of Climate Hazards to Airport Systems: A Synthesis of the Implications and Risk Mitigation Trends. Transport Reviews, 43, 652-675.
https://doi.org/10.1080/01441647.2022.2163319
[136]  Widlansky, M. J., Long, X., & Schloesser, F. (2020). Increase in Sea Level Variability with Ocean Warming Associated with the Nonlinear Thermal Expansion of Seawater. Communications Earth & Environment, 1, Article No. 9.
https://doi.org/10.1038/s43247-020-0008-8
[137]  Wisner, B., Blaikie, P., Cannon, T., & Davis, I. (2014). At Risk: Natural Hazards, Peoples Vulnerability and Disasters. Routledge.
[138]  Yu, M., Yang, C., & Li, Y. (2018). Big Data in Natural Disaster Management: A Review. Geosciences, 8, Article 165.
https://doi.org/10.3390/geosciences8050165
[139]  Zarowsky, C., Haddad, S., & Nguyen, V. (2013). Beyond ‘Vulnerable Groups’: Contexts and Dynamics of Vulnerability. Global Health Promotion, 20, 3-9.
https://doi.org/10.1177/1757975912470062
[140]  Zhang, K., Shalehy, M. H., Ezaz, G. T., Chakraborty, A., Mohib, K. M., & Liu, L. (2022). An Integrated Flood Risk Assessment Approach Based on Coupled Hydrological-Hydraulic Modeling and Bottom-Up Hazard Vulnerability Analysis. Environmental Modelling & Software, 148, Article ID: 105279.
https://doi.org/10.1016/j.envsoft.2021.105279

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133