This study examines the spatiotemporal trends and variability of precipitation extremes across Tanzania from 1981 to 2023, focusing on role of oceanic systems and large-scale climate phenomena. The analysis employed standardized extreme precipitation indices recommended by the Expert Team on Climate Change Detection and Indices. Spatial and temporal patterns were evaluated using empirical orthogonal function analysis, while Pearson correlation coefficients and the Mann-Kendall test were used to determ8ine the significance of trends and relationships. The results highlight pronounced spatial contrasts, with central and southern regions experiencing more intense and frequent extreme rainfall, including consecutive wet days, heavy precipitation events, and higher daily rainfall intensities. These regions exhibit significant upward trends, indicating heightened vulnerability to extreme wet conditions, while the northern areas experience fewer wet spells and lower overall precipitation. The first principal component captures a pattern of intensified precipitation in the southern and central regions, whereas the second principal component reveals a north-south gradient characterized by sustained moderate rainfall in the north and intense, short-duration rainfall in the south. Large-scale climate oscillations, including the Atlantic Multidecadal Oscillation, the El Ni?o-Southern Oscillation, the Indian Ocean Dipole, and the Pacific Decadal Oscillation, play a critical role in shaping regional precipitation extremes. These phenomena influence the frequency, spatial distribution, and intensity of rainfall through mechanisms such as atmospheric pressure anomalies, moisture convergence, and cyclonic activity. For instance, high-pressure systems in the North Pacific suppress rainfall, while cyclonic systems in the eastern Indian Ocean enhance convective activity and moisture availability.
References
[1]
Ahmad, I., Zhang, F., Tayyab, M., Anjum, M. N., Zaman, M., Liu, J. et al. (2018). Spatiotemporal Analysis of Precipitation Variability in Annual, Seasonal and Extreme Values over Upper Indus River Basin. Atmospheric Research, 213, 346-360. https://doi.org/10.1016/j.atmosres.2018.06.019
[2]
Alexander, L. V. (2016). Global Observed Long-Term Changes in Temperature and Precipitation Extremes: A Review of Progress and Limitations in IPCC Assessments and beyond. Weather and Climate Extremes, 11, 4-16. https://doi.org/10.1016/j.wace.2015.10.007
[3]
Alexander, L. V., Zhang, X., Peterson, T. C., Caesar, J., Gleason, B., Klein Tank, A. M. G. et al. (2006). Global Observed Changes in Daily Climate Extremes of Temperature and Precipitation. Journal of Geophysical Research: Atmospheres, 111, D05109. https://doi.org/10.1029/2005jd006290
[4]
Ame, H. K., Kijazi, A. L., Changa, L. B., Mafuru, K. B., Ngwali, M. K., Faki, M. M. et al. (2021). Rainfall Variability over Tanzania during October to December and Its Association with Sea Surface Temperature (SST). Atmospheric and Climate Sciences, 11, 324-341. https://doi.org/10.4236/acs.2021.112019
[5]
Barrett, C. B., & Santos, P. (2014). The Impact of Changing Rainfall Variability on Resource-Dependent Wealth Dynamics. Ecological Economics, 105, 48-54. https://doi.org/10.1016/j.ecolecon.2014.05.009
[6]
Borhara, K., Pokharel, B., Bean, B., Deng, L., & Wang, S. S. (2020). On Tanzania’s Precipitation Climatology, Variability, and Future Projection. Climate, 8, Article No. 34. https://doi.org/10.3390/cli8020034
[7]
Brohan, P., Kennedy, J. J., Harris, I., Tett, S. F. B., & Jones, P. D. (2006). Uncertainty Estimates in Regional and Global Observed Temperature Changes: A New Data Set from 1850. Journal of Geophysical Research: Atmospheres, 111, D12106. https://doi.org/10.1029/2005jd006548
[8]
Chang’a, L. B., Kijazi, A. L., Luhunga, P. M., Ng’ongolo, H. K., & Mtongor, H. I. (2017). Spatial and Temporal Analysis of Rainfall and Temperature Extreme Indices in Tanzania. Atmospheric and Climate Sciences, 7, 525-539. https://doi.org/10.4236/acs.2017.74038
[9]
Elleder, L. (2015). Historical Changes in Frequency of Extreme Floods in Prague. Hydrology and Earth System Sciences, 19, 4307-4315. https://doi.org/10.5194/hess-19-4307-2015
[10]
Fan, K., Xu, Z., & Tian, B. (2014). Has the Intensity of the Interannual Variability in Summer Rainfall over South China Remarkably Increased? Meteorology and Atmospheric Physics, 124, 23-32. https://doi.org/10.1007/s00703-013-0301-5
[11]
Fan, Y., Li, J., Zhu, S., Li, H., & Zhou, B. (2022). Trends and Variabilities of Precipitation and Temperature Extremes over Southeast Asia during 1981-2017. Meteorology and Atmospheric Physics, 134, Article No. 78. https://doi.org/10.1007/s00703-022-00913-6
[12]
Fischer, E. M., & Knutti, R. (2015). Anthropogenic Contribution to Global Occurrence of Heavy-Precipitation and High-Temperature Extremes. Nature Climate Change, 5, 560-564. https://doi.org/10.1038/nclimate2617
[13]
Funk, C., Peterson, P., Landsfeld, M., Pedreros, D., Verdin, J., Shukla, S. et al. (2015). The Climate Hazards Infrared Precipitation with Stations—A New Environmental Record for Monitoring Extremes. Scientific Data, 2, Article ID: 150066. https://doi.org/10.1038/sdata.2015.66
[14]
Gao, M., Yang, J., Gong, D., Shi, P., Han, Z., & Kim, S. (2019). Footprints of Atlantic Multidecadal Oscillation in the Low-Frequency Variation of Extreme High Temperature in the Northern Hemisphere. Journal of Climate, 32, 791-802. https://doi.org/10.1175/jcli-d-18-0446.1
[15]
Gautam, R. C., & Bana, R. S. (2014). Drought in India: Its Impact and Mitigation Strategies—A Review. Indian Journal of Agronomy, 59, 179-190. https://www.IndianJournals.com
[16]
Huang, B., Thorne, P. W., Banzon, V. F., Boyer, T., Chepurin, G., Lawrimore, J. H. et al. (2017). Extended Reconstructed Sea Surface Temperature, Version 5 (ersstv5): Upgrades, Validations, and Intercomparisons. Journal of Climate, 30, 8179-8205. https://doi.org/10.1175/jcli-d-16-0836.1
[17]
Karl, T. R., Nicholls, N., & Ghazi, A. (1999). Fitting a Probability Distribution to Extreme Precipitation for a Limited Mountain Area in Vietnam. Climatic Change, 42, 3-7. https://doi.org/10.1023/a:1005491526870
[18]
Kavishe, G. M., & Limbu, P. T. S. (2020). Variation of October to December Rainfall in Tanzania and Its Association with Sea Surface Temperature. Arabian Journal of Geosciences, 13, Article No. 534. https://doi.org/10.1007/s12517-020-05535-z
[19]
Kendall, M. G. (1955). Further Contributions to the Theory of Paired Comparisons. Biometrics, 11, 43-62. https://doi.org/10.2307/3001479
[20]
Kijazi, A. L., & Reason, C. J. C. (2009). Analysis of the 2006 Floods over Northern Tanzania. International Journal of Climatology, 29, 955-970. https://doi.org/10.1002/joc.1846
[21]
Lavell, A., Oppenheimer, M., Diop, C., Hess, J., Lempert, R., Li, J., Muir-Wood, R., & Myeong, S. (2012). Climate Change: New Dimensions in Disaster Risk, Exposure, Vulnerability, and Resilience. In C. B. Field, V. Barros, T. F. Stocker, D. Qin, D.J. Dokken, K. L. Ebi, M. D. Mastrandrea, K. J. Mach, G.-K. Plattner, S. K. Allen, M. Tignor, & P. M. Midgley (Eds.), Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation (pp. 25-64). Cambridge University Press.
[22]
Li, G., Zhang, X., Cannon, A. J., Murdock, T., Sobie, S., Zwiers, F. et al. (2018). Indices of Canada’s Future Climate for General and Agricultural Adaptation Applications. Climatic Change, 148, 249-263. https://doi.org/10.1007/s10584-018-2199-x
[23]
Li, X., Wang, X., & Babovic, V. (2018). Analysis of Variability and Trends of Precipitation Extremes in Singapore during 1980-2013. International Journal of Climatology, 38, 125-141. https://doi.org/10.1002/joc.5165
[24]
Limbu, P. T. S., & Guirong, T. (2020). Influence of the Tropical Atlantic Ocean and Its Walker Circulation Cell on October-December Rainfall Variability over Tanzania. International Journal of Climatology, 40, 5767-5782. https://doi.org/10.1002/joc.6550
[25]
Lu, R., Dong, B., & Ding, H. (2006). Impact of the Atlantic Multidecadal Oscillation on the Asian Summer Monsoon. Geophysical Research Letters, 33, L24701. https://doi.org/10.1029/2006gl027655
[26]
Mafuru, K. B., & Guirong, T. (2018). Assessing Prone Areas to Heavy Rainfall and the Impaction of the Upper Warm Temperature Anomaly during March-May Rainfall Season in Tanzania. Advances in Meteorology, 2018, Article ID: 8353296. https://doi.org/10.1155/2018/8353296
[27]
Makula, E. K., & Zhou, B. (2021). Changes in March to May Rainfall over Tanzania during 1978-2017. International Journal of Climatology, 41, 5663-5675. https://doi.org/10.1002/joc.7146
[28]
Makula, E. K., & Zhou, B. (2022). Linkage of Tanzania Short Rain Variability to Sea Surface Temperature over the Southern Oceans. Frontiers in Earth Science, 10, Article ID: 922172. https://doi.org/10.3389/feart.2022.922172
[29]
Mallakpour, I., & Villarini, G. (2015). The Changing Nature of Flooding across the Central United States. Nature Climate Change, 5, 250-254. https://doi.org/10.1038/nclimate2516
[30]
Mann, H. B. (1945). Nonparametric Tests against Trend. Econometrica, 13, 245-259. https://doi.org/10.2307/1907187
[31]
Manzanas, R., Amekudzi, L. K., Preko, K., Herrera, S., & Gutiérrez, J. M. (2014). Precipitation Variability and Trends in Ghana: An Intercomparison of Observational and Reanalysis Products. Climatic Change, 124, 805-819. https://doi.org/10.1007/s10584-014-1100-9
[32]
Massawe, W. C., & Xiao, Z. (2021). Analysis of Rainfall Variability over Tanzania in Late Austral Summer. Atmospheric and Oceanic Science Letters, 14, Article ID: 100049. https://doi.org/10.1016/j.aosl.2021.100049
[33]
Nangombe, S., Zhou, T., Zhang, W., Wu, B., Hu, S., Zou, L. et al. (2018). Record-Breaking Climate Extremes in Africa under Stabilized 1.5 ˚C and 2 ˚C Global Warming Scenarios. Nature Climate Change, 8, 375-380. https://doi.org/10.1038/s41558-018-0145-6
[34]
Ndabagenga, D. M., Yu, J., Mbawala, J. R., Ntigwaza, C. Y., & Juma, A. S. (2023). Climatic Indices’ Analysis on Extreme Precipitation for Tanzania Synoptic Stations. Journal of Geoscience and Environment Protection, 11, 182-208. https://doi.org/10.4236/gep.2023.1112010
[35]
Nicholson, S. E. (2015). Long-Term Variability of the East African “Short Rains” and Its Links to Large‐Scale Factors. International Journal of Climatology, 35, 3979-3990. https://doi.org/10.1002/joc.4259
[36]
Nicholson, S. E. (2018). The ITCZ and the Seasonal Cycle over Equatorial Africa. Bulletin of the American Meteorological Society, 99, 337-348. https://doi.org/10.1175/bams-d-16-0287.1
[37]
O’Gorman, P. A. (2015). Precipitation Extremes under Climate Change. Current Climate Change Reports, 1, 49-59. https://doi.org/10.1007/s40641-015-0009-3
[38]
Otto, F. E. L. (2024). Annual Review of Environment and Resources Attribution of Weather and Climate Events.
[39]
Rosenzweig, C., Tubiello, F. N., Goldberg, R., Mills, E., & Bloomfield, J. (2002). Increased Crop Damage in the US from Excess Precipitation under Climate Change. Global Environmental Change, 12, 197-202. https://doi.org/10.1016/s0959-3780(02)00008-0
[40]
Santos, C. A. C. d., Brito, J. I. B. d., Júnior, C. H. F. d. S., & Dantas, L. G. (2012). Trends in Precipitation Extremes over the Northern Part of Brazil from ERA40 Dataset. Revista Brasileira de Geografia Física, 5, 836-851. https://doi.org/10.26848/rbgf.v5i4.232872
[41]
Sen, P. K. (1968). Estimates of the Regression Coefficient Based on Kendall’s Tau. Journal of the American Statistical Association, 63, 1379-1389. https://doi.org/10.1080/01621459.1968.10480934
[42]
Sharma, S., Hamal, K., Khadka, N., Ali, M., Subedi, M., Hussain, G. et al. (2021). Projected Drought Conditions over Southern Slope of the Central Himalaya Using CMIP6 Models. Earth Systems and Environment, 5, 849-859. https://doi.org/10.1007/s41748-021-00254-1
[43]
Sheikh, M. M., Manzoor, N., Ashraf, J., Adnan, M., Collins, D., Hameed, S. et al. (2015). Trends in Extreme Daily Rainfall and Temperature Indices over South Asia. International Journal of Climatology, 35, 1625-1637. https://doi.org/10.1002/joc.4081
[44]
Shi, J., Cui, L., Wen, K., Tian, Z., Wei, P., & Zhang, B. (2018). Trends in the Consecutive Days of Temperature and Precipitation Extremes in China during 1961-2015. Environmental Research, 161, 381-391. https://doi.org/10.1016/j.envres.2017.11.037
[45]
Shiu, C., Liu, S. C., Fu, C., Dai, A., & Sun, Y. (2012). How Much Do Precipitation Extremes Change in a Warming Climate? Geophysical Research Letters, 39, L17707. https://doi.org/10.1029/2012gl052762
[46]
Tian, J., Liu, J., Wang, J., Li, C., Nie, H., & Yu, F. (2017). Trend Analysis of Temperature and Precipitation Extremes in Major Grain Producing Area of China. International Journal of Climatology, 37, 672-687. https://doi.org/10.1002/joc.4732
[47]
Trenberth, K. (2011). Changes in Precipitation with Climate Change. Climate Research, 47, 123-138. https://doi.org/10.3354/cr00953
[48]
van den Besselaar, E. J. M., Klein Tank, A. M. G., & Buishand, T. A. (2013). Trends in European Precipitation Extremes over 1951-2010. International Journal of Climatology, 33, 2682-2689. https://doi.org/10.1002/joc.3619
[49]
Wang, X. L., Wen, Q. H., & Wu, Y. (2007). Penalized Maximal T Test for Detecting Undocumented Mean Change in Climate Data Series. Journal of Applied Meteorology and Climatology, 46, 916-931. https://doi.org/10.1175/jam2504.1
[50]
Wang, X., Hou, X., & Wang, Y. (2017). Spatiotemporal Variations and Regional Differences of Extreme Precipitation Events in the Coastal Area of China from 1961 to 2014. Atmospheric Research, 197, 94-104. https://doi.org/10.1016/j.atmosres.2017.06.022
[51]
Yu, L., Zhong, S., Pei, L., Bian, X., & Heilman, W. E. (2016). Contribution of Large-Scale Circulation Anomalies to Changes in Extreme Precipitation Frequency in the United States. Environmental Research Letters, 11, Article ID: 044003. https://doi.org/10.1088/1748-9326/11/4/044003
[52]
Zhang, X. B., Yang, F., Alexander, L., Zwiers, F., Gleason, B., Stephenson, D., Klan Tank, A., New, M., & Vincent, L. (2004). RClimDex (1.0) User Manual.
[53]
Zhang, X., Hogg, W. D., & Mekis, É. (2001). Spatial and Temporal Characteristics of Heavy Precipitation Events over Canada. Journal of Climate, 14, 1923-1936. https://doi.org/10.1175/1520-0442(2001)014<1923:satcoh>2.0.co;2