Carbon dioxide (CO2) is a substantial contributor to global warming owing to its long atmospheric lifetime and high potential for global warming. It is related to the processes of raw material mining and industry, which is fundamental to economic development but also has negative impacts on the environment, namely the increase of global temperature and solid waste. To address this, various carbon capture, storage, utilization, and mineralization methods have emerged, but they remain at an early stage of development. This review discusses the applicability of solid waste materials, and slurry form in particular, for CO2 mineralization. It analyzes frequently researched materials, carbonation capabilities, reaction mechanisms, and industrial uses. Industrial waste materials, cement, and demolition waste are widely used in carbonation reactions because of their abundance and high Ca/Mg oxide content. The review also discusses carbonation types, including two major types—direct and indirect—which fall under the ex-situ category. The key factors influencing the carbonation efficiency include the CO2 concentration, temperature, pressure, particle size, and reaction chamber type. The construction sector is the principal beneficiary of carbonated materials due to the cementitious characteristics of recarbonated byproducts and precipitated calcium carbonate (PCC). Other industries, such as paper, plastics, and pharmaceuticals, also find applications for PCC. Future research is recommended to explore new materials for slurry carbonation, with potential applications in underground mine support for carbon sequestration and subsidence control.
References
[1]
Afandi, N., Satgunam, M., Mahalingam, S., Manap, A., Nagi, F., Liu, W. et al. (2024). Review on the Modifications of Natural and Industrial Waste CaO Based Sorbent of Calcium Looping with Enhanced CO2 Capture Capacity. Heliyon, 10, e27119. https://doi.org/10.1016/j.heliyon.2024.e27119
[2]
Ahmed, O., Ahmad, S., & Adekunle, S. K. (2024). Carbon Dioxide Sequestration in Cementitious Materials: A Review of Techniques, Material Performance, and Environmental Impact. Journal of CO2 Utilization, 83, Article ID: 102812. https://doi.org/10.1016/j.jcou.2024.102812
[3]
Albarracin Zaidiza, D., Belaissaoui, B., Rode, S., & Favre, E. (2017). Intensification Potential of Hollow Fiber Membrane Contactors for CO2 Chemical Absorption and Stripping Using Monoethanolamine Solutions. Separation and Purification Technology, 188, 38-51. https://doi.org/10.1016/j.seppur.2017.06.074
[4]
Alturki, A. (2022). The Global Carbon Footprint and How New Carbon Mineralization Technologies Can Be Used to Reduce CO2 Emissions. ChemEngineering, 6, Article No. 44. https://doi.org/10.3390/chemengineering6030044
[5]
Ambarita, M., Ardiansyah, D., Schmahl, W. W., Pusparizkita, Y. M., Ismail, R., Jamari, J. et al. (2024). Indirect Mineral Carbonation of Natural Asphalt Extraction Solid Waste Residue via pH and Temperature Control. Case Studies in Chemical and Environmental Engineering, 9, Article ID: 100715. https://doi.org/10.1016/j.cscee.2024.100715
[6]
Aparicio, P., Martín, D., Baya-Arenas, R., & Flores-Alés, V. (2022). Behaviour of Concrete and Cement in Carbon Dioxide Sequestration by Mineral Carbonation Processes. Boletín de la Sociedad Española de Cerámica y Vidrio, 61, 220-228. https://doi.org/10.1016/j.bsecv.2020.11.003
[7]
Assaggaf, R., Adekunle, S., Ahmad, S., Maslehuddin, M., Al-Amoudi, O., & Ali, S. (2019). Mechanical Properties, Durability Characteristics and Shrinkage of Plain Cement and Fly Ash Concretes Subjected to Accelerated Carbonation Curing. Journal of the South African Institution of Civil Engineering, 61, 73-81. https://doi.org/10.17159/2309-8775/2019/v61n4a7
[8]
Azdarpour, A., Afkhami Karaei, M., Hamidi, H., Mohammadian, E., & Honarvar, B. (2018). CO2 Sequestration through Direct Aqueous Mineral Carbonation of Red Gypsum. Petroleum, 4, 398-407. https://doi.org/10.1016/j.petlm.2017.10.002
[9]
Benhelal, E., Rashid, M. I., Holt, C., Rayson, M. S., Brent, G., Hook, J. M. et al. (2018). The Utilisation of Feed and Byproducts of Mineral Carbonation Processes as Pozzolanic Cement Replacements. Journal of Cleaner Production, 186, 499-513. https://doi.org/10.1016/j.jclepro.2018.03.076
[10]
Benhelal, E., Rashid, M. I., Rayson, M. S., Brent, G. F., Oliver, T., Stockenhuber, M. et al. (2019). Direct Aqueous Carbonation of Heat Activated Serpentine: Discovery of Undesirable Side Reactions Reducing Process Efficiency. Applied Energy, 242, 1369-1382. https://doi.org/10.1016/j.apenergy.2019.03.170
[11]
Bose, D., Bhattacharya, R., Kaur, T., Pandya, R., Sarkar, A., Ray, A. et al. (2024). Innovative Approaches for Carbon Capture and Storage as Crucial Measures for Emission Reduction within Industrial Sectors. Carbon Capture Science & Technology, 12, Article ID: 100238. https://doi.org/10.1016/j.ccst.2024.100238
[12]
Buckingham, J., Reina, T. R., & Duyar, M. S. (2022). Recent Advances in Carbon Dioxide Capture for Process Intensification. Carbon Capture Science & Technology, 2, Article ID: 100031. https://doi.org/10.1016/j.ccst.2022.100031
[13]
Bullock, L. A., Fernandez-Turiel, J., & Benavente, D. (2023). Experimental Investigation of Multiple Industrial Wastes for Carbon Dioxide Removal Strategies. International Journal of Greenhouse Gas Control, 129, Article ID: 103990. https://doi.org/10.1016/j.ijggc.2023.103990
[14]
Calvin, K., Dasgupta, D., Krinner, G., Mukherji, A., Thorne, P. W., Trisos, C., Romero, J., Aldunce, P., Barrett, K., Blanco, G., Cheung, W. W. L., Connors, S., Denton, F., Diongue-Niang, A., Dodman, D., Garschagen, M., Geden, O., Hayward, B., Jones, C., Péan, C. et al. (2023). IPCC, 2023: Climate Change 2023: Synthesis Report. Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Core Writing Team, H. Lee and J. Romero (eds.)]. IPCC, Intergovernmental Panel on Climate Change. https://doi.org/10.59327/IPCC/AR6-9789291691647
[15]
Capelo-Avilés, S., Tomazini de Oliveira, R., Gallo Stampino, I. I., Gispert-Guirado, F., Casals-Terré, A., Giancola, S. et al. (2024). A Thorough Assessment of Mineral Carbonation of Steel Slag and Refractory Waste. Journal of CO2 Utilization, 82, Article ID: 102770. https://doi.org/10.1016/j.jcou.2024.102770
[16]
Caudle, B., Taniguchi, S., Nguyen, T. T. H., & Kataoka, S. (2023). Integrating Carbon Capture and Utilization into the Glass Industry: Economic Analysis of Emissions Reduction through CO2 Mineralization. Journal of Cleaner Production, 416, Article ID: 137846. https://doi.org/10.1016/j.jclepro.2023.137846
[17]
Chai, S. Y. W., How, B. S., Chin, M. Y., & Ngu, L. H. (2024). Utilization of Accelerated Weathering of Limestone Captured Carbon Dioxide (CO2) with Cement Kiln Dust to Produce Building Material. Journal of Cleaner Production, 468, Article ID: 143047. https://doi.org/10.1016/j.jclepro.2024.143047
[18]
Chen, T., Jiang, W., Shen, A., Chen, Y., Pan, S., & Chiang, P. (2020). CO2 Mineralization and Utilization Using Various Calcium-Containing Wastewater and Refining Slag via a High-Gravity Carbonation Process. Industrial & Engineering Chemistry Research, 59, 7140-7150. https://doi.org/10.1021/acs.iecr.9b05410
[19]
Chen, Z. X., Zhang, N. T., Yan, S. R., Fish, J., & Chu, S. H. (2023). CO2 Mineralization into Waste-Valorized Lightweight Artificial Aggregate. Construction and Building Materials, 409, Article ID: 133861. https://doi.org/10.1016/j.conbuildmat.2023.133861
[20]
Córdoba, P., & Rojas, S. (2024). Carbon Sequestration through Mineral Carbonation: Using Commercial FGD-Gypsum from a Copper Smelter for Sustainable Waste Management and Environmental Impact Mitigation. Journal of Environmental Chemical Engineering, 12, Article ID: 112510. https://doi.org/10.1016/j.jece.2024.112510
[21]
Digulla, F., & Bringezu, S. (2023). Comparative Life Cycle Assessment of Carbon Dioxide Mineralization Using Industrial Waste as Feedstock to Produce Cement Substitutes. Energies, 16, Article No. 4118. https://doi.org/10.3390/en16104118
[22]
Erans, M., Manovic, V., & Anthony, E. J. (2016). Calcium Looping Sorbents for CO2 Capture. Applied Energy, 180, 722-742. https://doi.org/10.1016/j.apenergy.2016.07.074
[23]
Farhang, F., Oliver, T. K., Rayson, M. S., Brent, G. F., Molloy, T. S., Stockenhuber, M. et al. (2019). Dissolution of Heat Activated Serpentine for CO2 Sequestration: The Effect of Silica Precipitation at Different Temperature and pH Values. Journal of CO2 Utilization, 30, 123-129. https://doi.org/10.1016/j.jcou.2019.01.009
[24]
Gasós, A., Meijssen, M., & Mazzotti, M. (2024). Indirect Mineral Carbonation of Recycled Concrete Aggregate: Enhancing Calcium Extraction Using a Packed Bed Reactor. Journal of Cleaner Production, 449, Article ID: 141745. https://doi.org/10.1016/j.jclepro.2024.141745
[25]
Guo, Y., Sun, J., Wang, R., Li, W., Zhao, C., Li, C. et al. (2021). Recent Advances in Potassium-Based Adsorbents for CO2 Capture and Separation: A Review. Carbon Capture Science & Technology, 1, Article ID: 100011. https://doi.org/10.1016/j.ccst.2021.100011
[26]
Han, Z., Gao, J., Yuan, X., Zhong, Y., Ma, X., Chen, Z. et al. (2020). Microwave Roasting of Blast Furnace Slag for Carbon Dioxide Mineralization and Energy Analysis. RSC Advances, 10, 17836-17844. https://doi.org/10.1039/d0ra02846k
[27]
Hargis, C. W., Chen, I. A., Devenney, M., Fernandez, M. J., Gilliam, R. J., & Thatcher, R. P. (2021). Calcium Carbonate Cement: A Carbon Capture, Utilization, and Storage (CCUS) Technique. Materials, 14, Article No. 2709. https://doi.org/10.3390/ma14112709
[28]
Ho, H., Izumi, Y., & Iizuka, A. (2024). A CO2 Removal Technology Based on Mineral Carbonation and the Stability of Product Carbon Storage in a Cement Matrix. Environmental Technology & Innovation, 34, Article ID: 103623. https://doi.org/10.1016/j.eti.2024.103623
[29]
Huntzinger, D. N., Gierke, J. S., Kawatra, S. K., Eisele, T. C., & Sutter, L. L. (2009). Carbon Dioxide Sequestration in Cement Kiln Dust through Mineral Carbonation. Environmental Science & Technology, 43, 1986-1992. https://doi.org/10.1021/es802910z
[30]
Ibrahim, M. H., El-Naas, M. H., Benamor, A., Al-Sobhi, S. S., & Zhang, Z. (2019). Carbon Mineralization by Reaction with Steel-Making Waste: A Review. Processes, 7, Article No. 115. https://doi.org/10.3390/pr7020115
[31]
International Energy Agency (2020). Global Energy Review 2019. https://www.iea.org/reports/global-energy-review-2019
[32]
Jeong-Potter, C., & Farrauto, R. (2021). Feasibility Study of Combining Direct Air Capture of CO2 and Methanation at Isothermal Conditions with Dual Function Materials. Applied Catalysis B: Environmental, 282, Article ID: 119416. https://doi.org/10.1016/j.apcatb.2020.119416
[33]
Ji, L., & Yu, H. (2018). Carbon Dioxide Sequestration by Direct Mineralization of Fly Ash. In Carbon Dioxide Sequestration in Cementitious Construction Materials (pp. 13-37). Elsevier. https://doi.org/10.1016/b978-0-08-102444-7.00002-2
[34]
Jia, X., Wu, Z., Shi, H., Fan, Y., Zheng, R., & Wang, C. (2024). Direct Air CO2 Capture Using Coal Fly Ash Derived SBA-15 Supported Polyethylenimine. Carbon Capture Science & Technology, 10, Article ID: 100167. https://doi.org/10.1016/j.ccst.2023.100167
[35]
Jin, B., Wang, R., Fu, D., Ouyang, T., Fan, Y., Zhang, H. et al. (2024). Chemical Looping CO2 Capture and In-Situ Conversion as a Promising Platform for Green and Low-Carbon Industry Transition: Review and Perspective. Carbon Capture Science & Technology, 10, Article ID: 100169. https://doi.org/10.1016/j.ccst.2023.100169
[36]
Julcour, C., Bourgeois, F., Bonfils, B., Benhamed, I., Guyot, F., Bodénan, F. et al. (2015). Development of an Attrition-Leaching Hybrid Process for Direct Aqueous Mineral Carbonation. Chemical Engineering Journal, 262, 716-726. https://doi.org/10.1016/j.cej.2014.10.031
[37]
Kaithwas, A., Prasad, M., Kulshreshtha, A., & Verma, S. (2012). Industrial Wastes Derived Solid Adsorbents for CO2 Capture: A Mini Review. Chemical Engineering Research and Design, 90, 1632-1641. https://doi.org/10.1016/j.cherd.2012.02.011
[38]
Kaliyavaradhan, S. K., Ling, T., & Mo, K. H. (2020). CO2 Sequestration of Fresh Concrete Slurry Waste: Optimization of CO2 Uptake and Feasible Use as a Potential Cement Binder. Journal of CO2 Utilization, 42, Article ID: 101330. https://doi.org/10.1016/j.jcou.2020.101330
[39]
Khandelwal, H., Dhar, H., Thalla, A. K., & Kumar, S. (2019). Application of Life Cycle Assessment in Municipal Solid Waste Management: A Worldwide Critical Review. Journal of Cleaner Production, 209, 630-654. https://doi.org/10.1016/j.jclepro.2018.10.233
[40]
Kim, W. K., Lee, J., Park, J., & Moon, J. (2024). Carbon Sequestration in Cementitious Systems through CO2-Rich Hydration and Chemically Enforced CO2 Mineralization. Journal of CO2 Utilization, 84, Article ID: 102834. https://doi.org/10.1016/j.jcou.2024.102834
[41]
Krishnan, A., Nighojkar, A., & Kandasubramanian, B. (2023). Emerging Towards Zero Carbon Footprint via Carbon Dioxide Capturing and Sequestration. Carbon Capture Science & Technology, 9, Article ID: 100137. https://doi.org/10.1016/j.ccst.2023.100137
[42]
Kusin, F. M., Hasan, S. N. M. S., Hassim, M. A., & Molahid, V. L. M. (2020). Mineral Carbonation of Sedimentary Mine Waste for Carbon Sequestration and Potential Reutilization as Cementitious Material. Environmental Science and Pollution Research, 27, 12767-12780. https://doi.org/10.1007/s11356-020-07877-3
[43]
Lackner, K. S. (2009). Capture of Carbon Dioxide from Ambient Air. The European Physical Journal Special Topics, 176, 93-106. https://doi.org/10.1140/epjst/e2009-01150-3
[44]
Li, J., Hitch, M., Power, I., & Pan, Y. (2018). Integrated Mineral Carbonation of Ultramafic Mine Deposits—A Review. Minerals, 8, Article No. 147. https://doi.org/10.3390/min8040147
[45]
Li, J., Luo, M., Wang, K., Li, G., & Zhang, G. (2023). Review of Carbon Dioxide Mineralization of Magnesium‐Containing Materials. Carbon Neutralization, 2, 574-584. https://doi.org/10.1002/cnl2.80
[46]
Li, L., Yu, H., Ji, L., Zhou, S., Dao, V., Feron, P. et al. (2024). Integrated CO2 Capture and Mineralization Approach Based on KOH and Cement-Based Wastes. Journal of Environmental Chemical Engineering, 12, Article ID: 113382. https://doi.org/10.1016/j.jece.2024.113382
[47]
Li, Y., Zhang, S., Wang, R., Zhao, Y., & Men, C. (2019). Effects of Carbonation Treatment on the Crushing Characteristics of Recycled Coarse Aggregates. Construction and Building Materials, 201, 408-420. https://doi.org/10.1016/j.conbuildmat.2018.12.158
[48]
Li, Y., Zhao, S., Yao, Z., & Huang, X. (2023). Flexural Behavior of Reinforced Concrete Beams Strengthened Using Recycled Industrial Steel-Wire Mesh High-Performance Mortar. Case Studies in Construction Materials, 19, e02472. https://doi.org/10.1016/j.cscm.2023.e02472
[49]
Lin, S., Chen, P., Xiang, W., Hu, C., Li, F., Liu, J. et al. (2024). Exploring the Effect of Moisture on CO2 Diffusion and Particle Cementation in Carbonated Steel Slag. Applied Sciences, 14, Article No. 3631. https://doi.org/10.3390/app14093631
[50]
Liu, J., Chen, H., & Zhang, M. (n.d.-a). Mg2+ Leaching and CO2 Sequestration of Magnesium Tailings Enhanced by External Field Coupled with Pretreatment. https://ssrn.com/abstract=4763920
[51]
Liu, X., Zhao, X., Yin, H., Chen, J., & Zhang, N. (2018). Intermediate-Calcium Based Cementitious Materials Prepared by MSWI Fly Ash and Other Solid Wastes: Hydration Characteristics and Heavy Metals Solidification Behavior. Journal of Hazardous Materials, 349, 262-271. https://doi.org/10.1016/j.jhazmat.2017.12.072
[52]
Ma, Y., Zhang, X., Du, Z., Hou, H., & Zheng, Y. (2024). Research on Utilizable Calcium from Calcium Carbide Slag with Different Extractors and Its Effect on CO2 Mineralization. Materials, 17, Article No. 1068. https://doi.org/10.3390/ma17051068
[53]
Martins, R. O. G., Alvarenga, R. d. C. S. S., Pedroti, L. G., Oliveira, A. F. d., Mendes, B. C., & Azevedo, A. R. G. d. (2018). Assessment of the Durability of Grout Submitted to Accelerated Carbonation Test. Construction and Building Materials, 159, 261-268. https://doi.org/10.1016/j.conbuildmat.2017.10.111
[54]
Meijssen, M., Marinello, L., di Bella, C., Gasós, A., & Mazzotti, M. (2023). Industrial Demonstration of Indirect Mineral Carbonation in the Cement and Concrete Sector. Journal of Environmental Chemical Engineering, 11, Article ID: 110900. https://doi.org/10.1016/j.jece.2023.110900
[55]
Meng, J., Liao, W., & Zhang, G. (2021). Emerging CO2-Mineralization Technologies for Co-Utilization of Industrial Solid Waste and Carbon Resources in China. Minerals, 11, Article No. 274. https://doi.org/10.3390/min11030274
[56]
Mukherjee, A., Okolie, J. A., Abdelrasoul, A., Niu, C., & Dalai, A. K. (2019). Review of Post-Combustion Carbon Dioxide Capture Technologies Using Activated Carbon. Journal of Environmental Sciences, 83, 46-63. https://doi.org/10.1016/j.jes.2019.03.014
[57]
Mun, M., & Cho, H. (2013). Mineral Carbonation for Carbon Sequestration with Industrial Waste. Energy Procedia, 37, 6999-7005. https://doi.org/10.1016/j.egypro.2013.06.633
[58]
Myers, C. A., Nakagaki, T., & Akutsu, K. (2019). Quantification of the CO2 Mineralization Potential of Ironmaking and Steelmaking Slags under Direct Gas-Solid Reactions in Flue Gas. International Journal of Greenhouse Gas Control, 87, 100-111. https://doi.org/10.1016/j.ijggc.2019.05.021
[59]
Neeraj, & Yadav, S. (2020). Carbon Storage by Mineral Carbonation and Industrial Applications of CO2. Materials Science for Energy Technologies, 3, 494-500. https://doi.org/10.1016/j.mset.2020.03.005
[60]
Ngo, I., Ma, L., Zhao, Z., Zhai, J., Yu, K., & Wu, Y. (2024). Sol-Gel-Stabilized CO2 Foam for Enhanced In-Situ Carbonation in Foamed Fly Ash Backfill Materials. Geomechanics and Geophysics for Geo-Energy and Geo-Resources, 10, Article No. 80. https://doi.org/10.1007/s40948-024-00791-9
[61]
Pan, S., Chen, Y., Fan, L., Kim, H., Gao, X., Ling, T. et al. (2020). CO2 Mineralization and Utilization by Alkaline Solid Wastes for Potential Carbon Reduction. Nature Sustainability, 3, 399-405. https://doi.org/10.1038/s41893-020-0486-9
[62]
Pan, S., Chiang, A., Chang, E., Lin, Y., Kim, H., & Chiang, P. (2015). An Innovative Approach to Integrated Carbon Mineralization and Waste Utilization: A Review. Aerosol and Air Quality Research, 15, 1072-1091. https://doi.org/10.4209/aaqr.2014.10.0240
[63]
Pan, S., Chung, T., Ho, C., Hou, C., Chen, Y., & Chiang, P. (2017). CO2 Mineralization and Utilization Using Steel Slag for Establishing a Waste-to-Resource Supply Chain. Scientific Reports, 7, Article No. 17227. https://doi.org/10.1038/s41598-017-17648-9
[64]
Pan, S., Hung, C., Chan, Y., Kim, H., Li, P., & Chiang, P. (2016). Integrated CO2 Fixation, Waste Stabilization, and Product Utilization via High-Gravity Carbonation Process Exemplified by Circular Fluidized Bed Fly Ash. ACS Sustainable Chemistry & Engineering, 4, 3045-3052. https://doi.org/10.1021/acssuschemeng.6b00014
[65]
Pan, S., Shah, K. J., Chen, Y., Wang, M., & Chiang, P. (2017). Deployment of Accelerated Carbonation Using Alkaline Solid Wastes for Carbon Mineralization and Utilization toward a Circular Economy. ACS Sustainable Chemistry & Engineering, 5, 6429-6437. https://doi.org/10.1021/acssuschemeng.7b00291
[66]
Pan, X., Shi, C., Hu, X., & Ou, Z. (2017). Effects of CO2 Surface Treatment on Strength and Permeability of One-Day-Aged Cement Mortar. Construction and Building Materials, 154, 1087-1095. https://doi.org/10.1016/j.conbuildmat.2017.07.216
[67]
Paris Agreement (n.d.). United Nations. https://www.un.org/en/climatechange/paris-agreement
[68]
Pour, N., Webley, P. A., & Cook, P. J. (2018). Potential for Using Municipal Solid Waste as a Resource for Bioenergy with Carbon Capture and Storage (BECCS). International Journal of Greenhouse Gas Control, 68, 1-15. https://doi.org/10.1016/j.ijggc.2017.11.007
[69]
Qin, J., Ying, J., Wang, Y., Niu, A., Lin, C., Qiu, R. et al. (2023). Insights into Active and Passive Carbon Sequestration and Causticity Reduction in Hazardous Red Mud Slurry. Carbon Research, 2, Article No. 40. https://doi.org/10.1007/s44246-023-00071-3
[70]
Rashid, M. I., Yaqoob, Z., Mujtaba, M. A., Fayaz, H., & Saleel, C. A. (2023). Developments in Mineral Carbonation for Carbon Sequestration. Heliyon, 9, e21796. https://doi.org/10.1016/j.heliyon.2023.e21796
[71]
Reddy, K. R., Gopakumar, A., & Chetri, J. K. (2019). Critical Review of Applications of Iron and Steel Slags for Carbon Sequestration and Environmental Remediation. Reviews in Environmental Science and Bio/Technology, 18, 127-152. https://doi.org/10.1007/s11157-018-09490-w
[72]
Rim, G., Roy, N., Zhao, D., Kawashima, S., Stallworth, P., Greenbaum, S. G. et al. (2021). CO2 Utilization in Built Environment via the pCO2 Swing Carbonation of Alkaline Solid Wastes with Different Mineralogy. Faraday Discussions, 230, 187-212. https://doi.org/10.1039/d1fd00022e
[73]
Romanov, V., Soong, Y., Carney, C., Rush, G. E., Nielsen, B., & O’Connor, W. (2015). Mineralization of Carbon Dioxide: A Literature Review. ChemBioEng Reviews, 2, 231-256. https://doi.org/10.1002/cben.201500002
[74]
Roychand, R., Li, J., Kilmartin-Lynch, S., Saberian, M., Zhu, J., Youssf, O. et al. (2023). Carbon Sequestration from Waste and Carbon Dioxide Mineralisation in Concrete—A Stronger, Sustainable and Eco-Friendly Solution to Support Circular Economy. Construction and Building Materials, 379, Article ID: 131221. https://doi.org/10.1016/j.conbuildmat.2023.131221
[75]
Sanna, A., Uibu, M., Caramanna, G., Kuusik, R., & Maroto-Valer, M. M. (2014). A Review of Mineral Carbonation Technologies to Sequester CO2. Chemical Society Reviews, 43, 8049-8080. https://doi.org/10.1039/c4cs00035h
[76]
Sanz-Pérez, E. S., Murdock, C. R., Didas, S. A., & Jones, C. W. (2016). Direct Capture of CO2 from Ambient Air. Chemical Reviews, 116, 11840-11876. https://doi.org/10.1021/acs.chemrev.6b00173
[77]
Sariyev, O., Kelamanov, B., Dossekenov, M., Davletova, A., Kuatbay, Y., Zhuniskaliyev, T. et al. (2024). Environmental Characterization of Ferrochromium Production Waste (Refined Slag) and Its Carbonization Product. Heliyon, 10, e30789. https://doi.org/10.1016/j.heliyon.2024.e30789
[78]
Sorrentino, G. P., Guimaraes, R., Cornelio, A., Zanoletti, A., Valentim, B., & Bontempi, E. (2024). Mitigating CO2 Emissions through an Industrial Symbiosis Approach: Leveraging Cork Ash Carbonation. Heliyon, 10, e32893. https://doi.org/10.1016/j.heliyon.2024.e32893
[79]
Steinour, H. H. (1959). Some Effects of Carbon Dioxide on Mortars and Concrete-Discussion. Journal of American Concrete Institute,30, 905-907.
[80]
Stokreef, S., Sadri, F., Stokreef, A., & Ghahreman, A. (2022). Mineral Carbonation of Ultramafic Tailings: A Review of Reaction Mechanisms and Kinetics, Industry Case Studies, and Modelling. Cleaner Engineering and Technology, 8, Article ID: 100491. https://doi.org/10.1016/j.clet.2022.100491
[81]
Suescum-Morales, D., Kalinowska-Wichrowska, K., Fernández, J. M., & Jiménez, J. R. (2021). Accelerated Carbonation of Fresh Cement-Based Products Containing Recycled Masonry Aggregates for CO2 Sequestration. Journal of CO2 Utilization, 46, Article ID: 101461. https://doi.org/10.1016/j.jcou.2021.101461
[82]
Wang, S., Kim, J., & Qin, T. (2024). Mineral Carbonation of Iron and Steel By-Products: State-of-the-Art Techniques and Economic, Environmental, and Health Implications. Journal of CO2 Utilization, 81, Article ID: 102707. https://doi.org/10.1016/j.jcou.2024.102707
[83]
Wang, T., Yi, Z., Song, J., Zhao, C., Guo, R., & Gao, X. (2022). An Industrial Demonstration Study on CO2 Mineralization Curing for Concrete. iScience, 25, Article ID: 104261. https://doi.org/10.1016/j.isci.2022.104261
[84]
Wicaksono, P. B., & Triwigati, P. T. (2023). Potential Integration of Waste to Energy (WtE) and Carbon Mineralization Technology in Indonesia. IOP Conference Series: Earth and Environmental Science, 1199, Article ID: 012008. https://doi.org/10.1088/1755-1315/1199/1/012008
[85]
Xi, F., Davis, S. J., Ciais, P., Crawford-Brown, D., Guan, D., Pade, C. et al. (2016). Substantial Global Carbon Uptake by Cement Carbonation. Nature Geoscience, 9, 880-883. https://doi.org/10.1038/ngeo2840
[86]
Xie, H., Tang, L., Wang, Y., Liu, T., Hou, Z., Wang, J. et al. (2016). Feedstocks Study on CO2 Mineralization Technology. Environmental Earth Sciences, 75, Article No. 615. https://doi.org/10.1007/s12665-016-5352-8
[87]
Xu, D., Liu, J., Du, H., Ma, B., Tang, C., Ni, W. et al. (2024). Performance Optimization and Carbon Reduction Effect of Solid Waste-Based Cementitious Materials from Iron and Steel Metallurgical Slags and Ammonia-Soda Residue. Chemical Engineering Journal Advances, 17, Article ID: 100584. https://doi.org/10.1016/j.ceja.2024.100584
[88]
Yuen, Y. T., Sharratt, P. N., & Jie, B. (2016). Carbon Dioxide Mineralization Process Design and Evaluation: Concepts, Case Studies, and Considerations. Environmental Science and Pollution Research, 23, 22309-22330. https://doi.org/10.1007/s11356-016-6512-9
[89]
Zhan, B. J., Xuan, D. X., Poon, C. S., & Shi, C. J. (2019). Mechanism for Rapid Hardening of Cement Pastes under Coupled CO2-Water Curing Regime. Cement and Concrete Composites, 97, 78-88. https://doi.org/10.1016/j.cemconcomp.2018.12.021
[90]
Zhang, F., Mo, L. W., & Deng, M. (2016). Effect of Carbonation Curing on Mechanical Strength and Volume Stability of Steel Slag Concrete. Journal of the Chinese Ceramic Society, 44, 640-646.
[91]
Zhang, Q., Feng, P., Shen, X., Lu, J., Ye, S., Wang, H. et al. (2023). Utilization of Solid Wastes to Sequestrate Carbon Dioxide in Cement-Based Materials and Methods to Improve Carbonation Degree: A Review. Journal of CO2 Utilization, 72, Article ID: 102502. https://doi.org/10.1016/j.jcou.2023.102502
[92]
Zhang, W., Li, S., Ma, J., Huang, D., Zhang, L., & Ma, C. (2023). Feasibility Study of the Synergistic Use of Sludge and Coal-Based Solid Waste to Produce Environmentally Friendly Grouting Materials. ACS Omega, 8, 45854-45866. https://doi.org/10.1021/acsomega.3c06596
[93]
Zou, Y., Song, Q., Zhang, P., Xu, S., Bao, J., Xue, S. et al. (2024). Research Status of Building Materials Utilization and CO2 Curing Technology on Typical Coal-Based Solid Waste: A Critical Review. Journal of CO2 Utilization, 84, Article ID: 102860. https://doi.org/10.1016/j.jcou.2024.102860