|
广义相对论时空结构再探讨——星系碰撞中的暗物质与引力透镜效应原理分析
|
Abstract:
本文首先回顾了“广义相对论”的时空观和引力透镜现象,修正了“光线弯曲的同频互扰解释”推导过程,然后提出了光线由光子传播、引力由引力子传播、光子与引力子基本不发生作用,由此导致的“引力弯曲光线”在微观机理上无法解释的问题。最后列举了碰撞星系中的炙热气体与引力透镜反演的星系质量(暗物质)分布的分离现象的观测实例。传统的观点认为这些现象是暗物质存在的有力证据,本文认为:这些观测事实说明作为碰撞星系主要质量的不发光炙热气体,并未对引力透镜现象做出贡献,也就是说碰撞星系中的不发光炙热气体并未弯曲光线,也就没有弯曲它周围的时空,因此“广义相对论”中大质量物体引起其周围时空弯曲结论并不成立。本文认为碰撞星系中的暗物质是引力透镜中大质量发光星球发出的电磁波对可见光弯曲程度计算不足造成的,光线的弯曲与星球质量无关。
This article first reviews the space-time view of “general relativity” and the phenomenon of gravitational lensing, corrects the derivation process of “the same-frequency mutual interference explanation of light bending”, and then proposes that light is propagated by photons, gravity is propagated by gravitons; photons and gravitons have basically no interaction, and the resulting “gravitational bending of light” is a problem that cannot be explained in terms of microscopic mechanisms. Finally, an observational example of the separation phenomenon between the hot gas in colliding galaxies and the galaxy mass (dark matter) distribution inverted by gravitational lensing is listed. The traditional view is that these phenomena are strong evidence for the existence of dark matter. This article believes that these observational facts show that the non-luminous hot gas, which is the main mass of the colliding galaxy, does not contribute to the gravitational lensing phenomenon. In other words, the non-luminous gas in the colliding galaxy does not contribute to the gravitational lensing phenomenon. Hot gas does not bend light, nor does it bend the space-time around it. Therefore, the conclusion in the “General Theory of Relativity” that massive objects cause the space-time around them to bend does not hold. This article believes that the dark matter in colliding galaxies is caused by insufficient calculation of the degree of bending of visible light by electromagnetic waves emitted by massive luminous stars in gravitational lenses. The bending of light has nothing to do with the mass of the planet.
[1] | 赵峥. 爱因斯坦与广义相对论的诞生(续)——纪念广义相对论发表100周年[J]. 大学物理, 2015, 34(12): 1-5. |
[2] | 杨晓松, 蹇继贵. 光线在高密度星体旁的引力弯曲[J]. 三峡大学学报(自然科学版), 1996, 18(1): 99-101. |
[3] | 傅莉萍, 束成钢. 引力透镜的基本原理及最新研究进展[J]. 天文学进展, 2005, 23(1): 56-69. |
[4] | 陈军利. 光线弯曲的同频互扰解释——碰撞星系团中不存在“引力透镜”推演出的暗物质[J]. 天文与天体物理, 2024, 12(3): 44-55. |
[5] | 百度百科. 太阳辐射[EB/OL]. https://baike.baidu.com/item/%E5%A4%AA%E9%98%B3%E8%BE%90%E5%B0%84/5211804?fr=ge_ala, 2024-09-23. |
[6] | 许槑. 环圈量子引力简介[J]. 物理通报, 2007, 28(3): 53-55. |
[7] | Bradač, M., Clowe, D., Gonzalez, A.H., Marshall, P., Forman, W., Jones, C., et al. (2006) Strong and Weak Lensing United. III. Measuring the Mass Distribution of the Merging Galaxy Cluster 1ES 0657-558. The Astrophysical Journal, 652, 937-947. https://doi.org/10.1086/508601 |
[8] | Bradač, M., Allen, S.W., Treu, T., Ebeling, H., Massey, R., Morris, R.G., et al. (2008) Revealing the Properties of Dark Matter in the Merging Cluster MACS J0025.4-1222. The Astrophysical Journal, 687, 959-967. https://doi.org/10.1086/591246 |
[9] | Merten, J., Coe, D., Dupke, R., Massey, R., Zitrin, A., Cypriano, E.S., et al. (2011) Creation of Cosmic Structure in the Complex Galaxy Cluster Merger Abell 2744. Monthly Notices of the Royal Astronomical Society, 417, 333-347. https://doi.org/10.1111/j.1365-2966.2011.19266.x |
[10] | Hoang, D.N., Shimwell, T.W., van Weeren, R.J., Brunetti, G., Röttgering, H.J.A., Andrade-Santos, F., et al. (2019) Radio Observations of the Merging Galaxy Cluster Abell 520. Astronomy & Astrophysics, 622, A20. https://doi.org/10.1051/0004-6361/201833900 |
[11] | Wang, Y., Lui, F., Shen, Z., Wang, J., Hu, D. and Xu, H. (2019) Revealing a Head-On Major Merger in the Nearby NGC 6338 Group with Chandra and VLA Observations. The Astrophysical Journal, 870, Article 132. https://doi.org/10.3847/1538-4357/aaf234 |