全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

不同大小微塑料与草甘膦单一及联合胁迫对紫萍的影响
The Effects of Different Sizes of Microplastics and Glyphosate Single and Combined Stress on Purple Duckweed

DOI: 10.12677/br.2025.141003, PP. 21-35

Keywords: 紫萍,微塑料,草甘膦,单一污染,联合胁迫
Purple Duckweed
, Microplastics, Glyphosate, Single Pollution, Combined Stress

Full-Text   Cite this paper   Add to My Lib

Abstract:

微塑料污染对生态系统和人类健康具有一定影响,已成为世界上最严重的环境问题之一。近年来,微塑料对植物生长和发育的影响受到了广泛关注。其不仅可以对植物形成直接胁迫,还可以通过吸附其他有机或无机污染物,形成联合污染。本研究主要探索了不同大小、微塑料分别与草甘膦联合胁迫对漂浮植物紫萍的生态毒性效应。实验结果表明:草甘膦显著减少了紫萍根的数目,PS及其大小对紫萍的根的数目并无显著影响;维生素C,可溶性糖,可溶性蛋白,SOD和APX活性进一步提高,大大降低了草甘膦带来的抑制作用,微米塑料诱导SOD和POD活性的增加,而纳米塑料则主要诱导POD和APX活性的增加。
Microplastic pollution has a certain impact on ecosystems and human health, and has become one of the most serious environmental problems in the world. In recent years, the impact of microplastics on plant growth and development has received widespread attention. It can not only directly stress plants, but also form joint pollution by adsorbing other organic or inorganic pollutants. This study mainly explored the ecological toxicity effects of different sizes and microplastics combined with glyphosate stress on floating plant purple duckweed. The experimental results showed that glyphosate significantly reduced the number of purple duckweed roots, while PS and its size had no significant effect on the number of purple duckweed roots; Vitamin C, soluble sugars, soluble proteins, SOD and APX activities were further increased, greatly reducing the inhibitory effect of glyphosate. Microplastics induced an increase in SOD and POD activities, while nanoplastics mainly induced an increase in POD and APX activities.

References

[1]  Lian, J., Wu, J., Xiong, H., Zeb, A., Yang, T., Su, X., et al. (2020) Impact of Polystyrene Nanoplastics (PSNPs) on Seed Germination and Seedling Growth of Wheat (Triticum aestivum L.). Journal of Hazardous Materials, 385, Article ID: 121620.
https://doi.org/10.1016/j.jhazmat.2019.121620
[2]  Li, Z., Li, R., Li, Q., Zhou, J. and Wang, G. (2020) Physiological Response of Cucumber (Cucumis sativus L.) Leaves to Polystyrene Nanoplastics Pollution. Chemosphere, 255, Article ID: 127041.
https://doi.org/10.1016/j.chemosphere.2020.127041
[3]  Senavirathna, M.D.H.J., Zhaozhi, L. and Fujino, T. (2022) Short-Duration Exposure of 3-μm Polystyrene Microplastics Affected Morphology and Physiology of Watermilfoil (sp. roraima). Environmental Science and Pollution Research, 29, 34475-34485.
https://doi.org/10.1007/s11356-022-18642-z
[4]  Jiang, X., Chen, H., Liao, Y., Ye, Z., Li, M. and Klobučar, G. (2019) Ecotoxicity and Genotoxicity of Polystyrene Microplastics on Higher Plant Vicia faba. Environmental Pollution, 250, 831-838.
https://doi.org/10.1016/j.envpol.2019.04.055
[5]  Li, L., Luo, Y., Li, R., Zhou, Q., Peijnenburg, W.J.G.M., Yin, N., et al. (2020) Effective Uptake of Submicrometre Plastics by Crop Plants via a Crack-Entry Mode. Nature Sustainability, 3, 929-937.
https://doi.org/10.1038/s41893-020-0567-9
[6]  Bhagat, J., Nishimura, N. and Shimada, Y. (2021) Toxicological Interactions of Microplastics/Nanoplastics and Environmental Contaminants: Current Knowledge and Future Perspectives. Journal of Hazardous Materials, 405, Article ID: 123913.
https://doi.org/10.1016/j.jhazmat.2020.123913
[7]  Group T M I (2022) THERMOPLASTIC ELASTOMERS(TPE) Position Paper. TPE Magazine International: Thermoplastic Elastomers, 14, 16.
[8]  Mahon, A.M., O’ Connell, B., Healy, M.G., O’ Connor, I., Officer, R., Nash, R., et al. (2017) Microplastics in Sewage Sludge: Effects of Treatment. In: Baztan, J., et al., Eds., Fate and Impact of Microplastics in Marine Ecosystems, Elsevier, 4.
https://doi.org/10.1016/b978-0-12-812271-6.00181-2
[9]  Ahmad, M. and Bajahlan, A.S. (2007) Leaching of Styrene and Other Aromatic Compounds in Drinking Water from PS Bottles. Journal of Environmental Sciences, 19, 421-426.
https://doi.org/10.1016/s1001-0742(07)60070-9
[10]  Jampeetong, A. and Brix, H. (2009) Effects of NaCl Salinity on Growth, Morphology, Photosynthesis and Proline Accumulation of Salvinia Natans. Aquatic Botany, 91, 181-186.
https://doi.org/10.1016/j.aquabot.2009.05.003
[11]  柴露露. 阴离子表面活性剂LAS和多环芳烃萘对两种漂浮植物的效应探究[D]: [硕士学位论文]. 武汉: 武汉大学, 2019.
[12]  张治安, 陈展宇. 植物生理学实验技术[M]. 吉林: 吉林大学出版社, 2008.
[13]  Bradford, M.M. (1976) A Rapid and Sensitive Method for the Quantitation of Microgram Quantities of Protein Utilizing the Principle of Protein-Dye Binding. Analytical Biochemistry, 72, 248-254.
[14]  Yu, H., Peng, J., Cao, X., Wang, Y., Zhang, Z., Xu, Y., et al. (2021) Effects of Microplastics and Glyphosate on Growth Rate, Morphological Plasticity, Photosynthesis, and Oxidative Stress in the Aquatic Species Salvinia Cucullata. Environmental Pollution, 279, Article ID: 116900.
https://doi.org/10.1016/j.envpol.2021.116900
[15]  Dovidat, L.C., Brinkmann, B.W., Vijver, M.G. and Bosker, T. (2019) Plastic Particles Adsorb to the Roots of Freshwater Vascular Plant Spirodela polyrhiza but Do Not Impair Growth. Limnology and Oceanography Letters, 5, 37-45.
https://doi.org/10.1002/lol2.10118
[16]  Kalčíková, G., Žgajnar Gotvajn, A., Kladnik, A. and Jemec, A. (2017) Impact of Polyethylene Microbeads on the Floating Freshwater Plant Duckweed Lemna minor. Environmental Pollution, 230, 1108-1115.
https://doi.org/10.1016/j.envpol.2017.07.050
[17]  Mateos-Cárdenas, A., Scott, D.T., Seitmaganbetova, G., Frank, N.A.M., John, O. and Marcel, A.K. (2019) Polyethylene Microplastics Adhere to Lemna minor (L.), Yet Have No Effects on Plant Growth or Feeding by Gammarus duebeni (Lillj.). Science of the Total Environment, 689, 413-421.
https://doi.org/10.1016/j.scitotenv.2019.06.359
[18]  Ceschin, S., Mariani, F., Di Lernia, D., Venditti, I., Pelella, E. and Iannelli, M.A. (2023) Effects of Microplastic Contamination on the Aquatic Plant Lemna minuta (Least Duckweed). Plants, 12, Article 207.
https://doi.org/10.3390/plants12010207
[19]  van Weert, S., Redondo-Hasselerharm, P.E., Diepens, N.J. and Koelmans, A.A. (2019) Effects of Nanoplastics and Microplastics on the Growth of Sediment-Rooted Macrophytes. Science of The Total Environment, 654, 1040-1047.
https://doi.org/10.1016/j.scitotenv.2018.11.183
[20]  Song, U., Kim, J. and Rim, H. (2023) Assessing Phytotoxicity of Microplastics on Aquatic Plants Using Fluorescent Microplastics. Environmental Science and Pollution Research, 30, 74186-74195.
https://doi.org/10.1007/s11356-023-27621-x
[21]  Zhang, Q., Qu, Q., Lu, T., Ke, M., Zhu, Y., Zhang, M., et al. (2018) The Combined Toxicity Effect of Nanoplastics and Glyphosate on Microcystis Aeruginosa Growth. Environmental Pollution, 243, 1106-1112.
https://doi.org/10.1016/j.envpol.2018.09.073
[22]  Rozman, U. and Kalčíková, G. (2022) The Response of Duckweed Lemna Minor to Microplastics and Its Potential Use as a Bioindicator of Microplastic Pollution. Plants, 11, Article 2953.
https://doi.org/10.3390/plants11212953
[23]  Nguyen, H.T., Lee, Y.K., Kwon, J. and Hur, J. (2023) Microplastic Biofilms in Water Treatment Systems: Fate and Risks of Pathogenic Bacteria, Antibiotic-Resistant Bacteria, and Antibiotic Resistance Genes. Science of the Total Environment, 892, Article ID: 164523.
https://doi.org/10.1016/j.scitotenv.2023.164523
[24]  Maity, S., Biswas, C., Banerjee, S., Guchhait, R., Adhikari, M., Chatterjee, A., et al. (2021) Interaction of Plastic Particles with Heavy Metals and the Resulting Toxicological Impacts: A Review. Environmental Science and Pollution Research, 28, 60291-60307.
https://doi.org/10.1007/s11356-021-16448-z
[25]  Li, Z., Li, Q., Li, R., Zhou, J. and Wang, G. (2020) The Distribution and Impact of Polystyrene Nanoplastics on Cucumber Plants. Environmental Science and Pollution Research, 28, 16042-16053.
https://doi.org/10.1007/s11356-020-11702-2
[26]  Zhou, C., Lu, C., Mai, L., Bao, L., Liu, L. and Zeng, E.Y. (2021) Response of Rice (Oryza sativa L.) Roots to Nanoplastic Treatment at Seedling Stage. Journal of Hazardous Materials, 401, Article ID: 123412.
https://doi.org/10.1016/j.jhazmat.2020.123412
[27]  Zhang, Y., Yang, X., Luo, Z., Lai, J., Li, C. and Luo, X. (2022) Effects of Polystyrene Nanoplastics (PSNPs) on the Physiology and Molecular Metabolism of Corn (Zea mays L.) Seedlings. Science of the Total Environment, 806, Article ID: 150895.
https://doi.org/10.1016/j.scitotenv.2021.150895
[28]  Ma, C., Liu, H., Guo, H., Musante, C., Coskun, S.H., Nelson, B.C., et al. (2016) Defense Mechanisms and Nutrient Displacement in Arabidopsis Thaliana Upon Exposure to Ceo2 and In2O3 Nanoparticles. Environmental Science: Nano, 3, 1369-1379.
https://doi.org/10.1039/c6en00189k
[29]  Tewari, S., Tandon, P.K. and Rai, V. (2013) Assessment of Growth and Metabolic Effects of Chemical Pesticide (Quinalphos) in Tomato (Lycopersicon esculentum L.) Plants. Indian Journal of Agricultural Biochemistry, 26, 97-101.
[30]  Mato, Y., Isobe, T., Takada, H., Kanehiro, H., Ohtake, C. and Kaminuma, T. (2000) Plastic Resin Pellets as a Transport Medium for Toxic Chemicals in the Marine Environment. Environmental Science & Technology, 35, 318-324.
https://doi.org/10.1021/es0010498
[31]  Drincovich, M.F., Voll, L.M. and Maurino, V.G. (2016) Editorial: On the Diversity of Roles of Organic Acids. Frontiers in Plant Science, 7, Article 1592.
https://doi.org/10.3389/fpls.2016.01592

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133