全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

山东烟台市短时强降水特征分析
Analysis on Characteristics of Short-Time Heavy Rainfall in Yantai City, Shandong Province

DOI: 10.12677/ccrl.2025.141011, PP. 97-106

Keywords: 烟台市,短时强降水,机器学习,相关性,时空分布
Yantai
, Short-Term Heavy Rainfall, Machine Learning, Correlation, Spatial and Temporal Distribution

Full-Text   Cite this paper   Add to My Lib

Abstract:

本文利用山东省烟台市2019年1月~2023年12月降水实况资料,对烟台市的短时强降水发生频次的空间分布、日变化、月变化以及年变化特征进行分析,并尝试利用CatBoost机器学习算法对短时强降水进行预测,结论如下:烟台市短时强降水发生频次及最强降水主要集中在西北以及东南部沿海地区,其中西北部地区的短时强降水,从发生频次以及最大强降水来说均较大,在烟台中部、北部及东部短时强降水发生频次及强度均较小;烟台市短时强降水总频次日变化、月变化及年变化特征均较为显著,日变化方面,傍晚至凌晨短时强降水发生频次最多,凌晨及午后为发生频次第二多的时段,而日出前后短时强降水发生频次较低;其月变化波动幅度较大,呈先增大后减少的变化特征,短时强降水较为集中在6~8月;其年变化波动幅度也较大,也呈先增大后减少的变化趋势,在2022年达到最多为499次,之后逐渐减少,2019年最少为72次,短时强降水发生频次较多的时段集中在2021~2023年。用CatBoost模型对烟台市强降水进行初步预测,模型基本能够很好地捕捉烟台市短时强降水特征,在测试集上表现出较好的预测能力,这表明该模型具有很好的泛化能力。
Based on the actual precipitation data of Yantai City, Shandong Province from January 2019 to December 2023, this paper analyzes the spatial distribution, daily variation, monthly variation and annual variation characteristics of the frequency of short-term heavy precipitation in Yantai City, and tries to use CatBoost machine learning algorithm to predict short-term heavy precipitation. The conclusions are as follows: The frequency of short-term heavy precipitation and the strongest precipitation in Yantai City are mainly concentrated in the northwest and southeast coastal areas. The short-term heavy precipitation in the northwest is larger in terms of frequency and maximum heavy precipitation. The frequency and intensity of short-term heavy precipitation in the central, northern and eastern parts of Yantai are small. The daily variation, monthly variation and annual variation characteristics of the total frequency of short-term heavy precipitation in Yantai City are significant. In terms of daily variation, the frequency of short-term heavy precipitation from the evening to the early morning is the most frequent, and the early morning and afternoon are the second most frequent periods, while the frequency of short-term heavy precipitation before and after sunrise is low. The fluctuation range of monthly variation is large, which increases first and then decreases. The short-term heavy precipitation is more concentrated in June-August. The fluctuation range of its annual change is also large, and it also shows a trend of increasing first and then decreasing. It reaches a maximum of 499 times in 2022, and then gradually decreases. In 2019, it is at least 72 times. The period with more frequency of short-term heavy precipitation is concentrated in 2021~2023. The CatBoost model is used to predict the heavy precipitation in Yantai City. The model can basically capture the characteristics of short-term

References

[1]  陈军. 短时强降水个例的特征分析[D]: [硕士学位论文]. 南京: 南京大学, 2016.
[2]  樊李苗. 短时强降水发生的环境条件和个例分析[D]: [硕士学位论文]. 北京: 中国气象科学研究院, 2012.
[3]  孙晓巍. 辽宁短时强降水分布特征及预报技术研究[D]: [硕士学位论文]. 兰州: 兰州大学, 2015.
[4]  丁丽佳, 谢汉良, 佘元标, 等. 潮州极端短时强降水时空分布特征及地形作用[J]. 广东气象, 2022, 44(6): 16-20.
[5]  孙颖, 邓运超, 赵程程. 青岛市短时强降水及其大尺度环流背景特征分析[J/OL]. 海洋湖沼通报(中英文), 1-16.
http://kns.cnki.net/kcms/detail/37.1141.P.20240903.1144.002.html, 2025-01-09.
[6]  唐永兰, 徐桂荣, 万蓉. 2020年主汛期长江流域短时强降水时空分布特征[J]. 大气科学学报, 2022, 45(2): 212-224.
[7]  王子月. 长江中下游夏季极端降水事件的归因和未来预估[D]: [博士学位论文]. 南京: 南京信息工程大学, 2023.
[8]  王雅芳. 人为和自然强迫对全球降水变化的影响及预估[D]: [博士学位论文]. 兰州: 兰州大学, 2023.
[9]  刘婕妤. 不同空间尺度极端降水变化的人类活动检测归因[D]: [硕士学位论文]. 扬州: 扬州大学, 2022.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133