全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于网络药理学探究四神汤干预伴有抑郁症的腹泻型肠易激综合征的机制
Exploring the Mechanism of Sishen Decoction in Intervening Diarrhea-Predominant Irritable Bowel Syndrome with Depression Based on Network Pharmacology

DOI: 10.12677/acm.2025.151085, PP. 622-633

Keywords: 四神汤,抑郁症,腹泻型肠易激综合征,网络药理学,分子对接
Sishen Decoction
, Depression, Diarrhea-Predominant Irritable Bowel Syndrome, Network Pharmacological, Molecular Docking

Full-Text   Cite this paper   Add to My Lib

Abstract:

目的:基于网络药理学和分子对接技术探讨四神汤干预伴有抑郁症(Depression)的腹泻型肠易激综合征(Diarrhea-predominant irritable bowel syndrome, IBS-D)的分子机制。方法:通过TCMSP、GeneCards、TTD、OMIM数据库预测活性成分和疾病靶点;使用Cytoscape 3.10.2软件构建“四神汤–活性成分–潜在靶点–伴有抑郁症的腹泻型肠易激综合征”网络和构建蛋白质相互作用(PPI)网络图;通过R 4.1.1软件进行基因本体(GO)和京东基因与基因组百科全书(KEGG)信号通路富集分析;最后,采用PyMOL 3.0.4和AutoDock 1.5.7软件进行分子对接,验证关键成分与靶点结合的稳定性。结果:筛选出四神汤中24个活性成分和111个干预伴有抑郁症的IBS-D的靶点,GO和KEGG富集分析显示这些靶点与炎症、氧化应激、细胞增殖等生物过程相关,主要涉及磷脂酰肌3–激酶–蛋白激酶B (Phosphatidylinositol 3-kinase-protein kinase B, PI3K-AKT)等信号通路。分子对接数据显示结合能均小于?5 kcal/mol,表明从四神汤中筛选的活性成分与伴有抑郁症的IBS-D的核心靶点有较强的亲和力。结论:四神汤可能通过槲皮素、木犀草素、荷叶碱、薯蓣皂苷元等关键成分作用于白细胞介素-6 (Interleukin-6, IL-6)、丝氨酸/苏氨酸蛋白激酶1 (Akt Serine/Threonine-protein Kinase 1, AKT1)、肿瘤蛋白p53 (Tumor Protein p53, TP53)、5-羟色胺受体2A (5-Hydroxytryptamine Receptor 2A, HTR2A)、5-羟色胺受体3A (5-Hydroxytryptamine Receptor 3A, HTR3A)等核心靶点,与PI3K-AKT和5-羟色胺(5-hydroxytryptamine, 5-HT)等信号通路相关,通过调控炎症、氧化应激、细胞增殖等生物过程干预伴有抑郁症的IBS-D。
Objective: To explore the molecular mechanism of Sishen Decoction in intervening diarrhea-predominant irritable bowel syndrome with depression based on network pharmacology and molecular docking techniques. Methods: Active ingredients and disease targets were predicted by accessing TCMSP, GeneCards, TTD, and OMIM, databases. Next, Cytoscape 3.10.2 software was used to construct the “Sishen Decoction-active ingredients-potential targets-diarrhea-predominant irritable bowel syndrome with depression” network and protein-protein interaction network diagram. R 4.11 software was used to carry out GO and KEGG pathways enrichment analysis. Finally, the above results were validated by molecular docking using PyMOL 3.0.4 and AutoDock 1.5.7 software. Results: 24 active ingredients and 111 targets for intervention in IBS-D with depression were screened out from Sishen Decoction. GO and KEGG analyses showed that these targets were related to biological processes such as inflammation, oxidative stress, and cell proliferation, mainly involving signaling pathways such as phosphatidylinositol PI3K-AKT. Molecular docking data showed that the binding energy was less than ?5 kcal/mol, indicating that the active ingredients screened from Sishen Decoction had a strong affinity with the core targets of IBS-D with depression. Conclusion: Sishen Decoction may exert therapeutic effects through key ingredients including quercetin, luteolin, nuciferine, and diosgenin targeting core proteins such as IL-6, AKT1, TP53, HTR2A

References

[1]  Zamani, M., Alizadeh‐Tabari, S. and Zamani, V. (2019) Systematic Review with Meta‐Analysis: The Prevalence of Anxiety and Depression in Patients with Irritable Bowel Syndrome. Alimentary Pharmacology & Therapeutics, 50, 132-143.
https://doi.org/10.1111/apt.15325
[2]  Huang, J., Cai, Y., Su, Y., Zhang, M., Shi, Y., Zhu, N., et al. (2021) Gastrointestinal Symptoms during Depressive Episodes in 3256 Patients with Major Depressive Disorders: Findings from the NSSD. Journal of Affective Disorders, 286, 27-32.
https://doi.org/10.1016/j.jad.2021.02.039
[3]  张声生, 魏玮, 杨俭勤. 肠易激综合征中医诊疗专家共识意见(2017) [J]. 中医杂志, 2017, 58(18): 1614-1620.
[4]  梁士兵, 张英英, 王志婕, 等. 斯坦福治疗期望量表的汉化及在肝郁脾虚证腹泻型肠易激综合征患者中医治疗中的应用评价[J]. 中医杂志, 2024, 65(19): 1994-2001.
[5]  沈全鱼, 吴玉华. 泄泻[M]. 太原: 山西科学教育出版社, 1986.
[6]  王伟, 孙轸, 邓华亮. 从“脾藏意”探讨五加减正气散治疗腹泻型肠易激综合征的理论依据[J]. 中国医学创新, 2024, 21(27): 175-179.
[7]  Liang, S., Wu, X., Hu, X., Niu, Y. and Jin, F. (2018) The Development and Tendency of Depression Researches: Viewed from the Microbiota-Gut-Brain Axis. Chinese Science Bulletin, 63, 2010-2025.
https://doi.org/10.1360/n972017-01182
[8]  Wu, J., Masuy, I., Biesiekierski, J.R., Fitzke, H.E., Parikh, C., Schofield, L., et al. (2022) Gut‐Brain Axis Dysfunction Underlies Fodmap‐Induced Symptom Generation in Irritable Bowel Syndrome. Alimentary Pharmacology & Therapeutics, 55, 670-682.
https://doi.org/10.1111/apt.16812
[9]  王艳, 高田田, 王子颖, 等. 越鞠丸干预CUMS小鼠对抑郁样行为、功能性消化不良及PACAP/PAC1-R表达的影响[J]. 南京中医药大学学报, 2024, 40(3): 261-267.
[10]  刘庭妤. 台湾省经典药膳——四神汤[C]//2021中国药膳学术研讨会论文集. 2021: 3.
[11]  王珊娜. 四神汤加减治疗脾虚泄泻的疗效观察[J]. 中国疗养医学, 2019, 28(7): 769-770.
[12]  Guo, P., Zhang, B., Zhao, J., Wang, C., Wang, Z., Liu, A., et al. (2022) Medicine-Food Herbs against Alzheimer’s Disease: A Review of Their Traditional Functional Features, Substance Basis, Clinical Practices and Mechanisms of Action. Molecules, 27, Article No. 901.
https://doi.org/10.3390/molecules27030901
[13]  Hu, P., Ge, X., Gao, M., Wang, X., Zhang, Y., Li, Y., et al. (2022) Nelumbo nucifera Gaertn: An Updated Review of the Antitumor Activity and Mechanisms of Alkaloids. Pharmacological ResearchModern Chinese Medicine, 5, Article ID: 100167.
https://doi.org/10.1016/j.prmcm.2022.100167
[14]  郝瑞, 张莉莉, 顾成娟, 等. 薏苡仁、莲子、芡实治疗脾虚泄泻经验——仝小林三味小方撷萃[J]. 吉林中医药, 2020, 40(8): 992-994.
[15]  李锐平. 中医药治疗非小细胞肺癌EGFR-TKIs相关性腹泻的研究进展[J]. 中医学, 2023, 12(11): 3317-3322.
[16]  Xie, X.W., Zhong, J.C., Li, D.P., et al. (2022) Research Progress of Dioscin in Prevention and Treatment of Primary Osteoporosis. Basic & Clinical Medicine, 42, 960.
[17]  徐蔚飞, 张建强. 痛泻四神汤联合西药治疗腹泻型肠易激综合征疗效观察及对胃肠激素水平的影响[J]. 新中医, 2020, 52(24): 84-87.
[18]  Balmus, I., Ilie, O., Ciobica, A., Cojocariu, R., Stanciu, C., Trifan, A., et al. (2020) Irritable Bowel Syndrome between Molecular Approach and Clinical Expertise—Searching for Gap Fillers in the Oxidative Stress Way of Thinking. Medicina, 56, Article No. 38.
https://doi.org/10.3390/medicina56010038
[19]  Bai, C., Wang, J., Wang, Y., Liu, H., Li, J., Wang, S., et al. (2024) Exploration of the Mechanism of Traditional Chinese Medicine for Anxiety and Depression in Patients with Diarrheal Irritable Bowel Syndrome Based on Network Pharmacology and Meta-Analysis. Frontiers in Pharmacology, 15, Article ID: 1404738.
https://doi.org/10.3389/fphar.2024.1404738
[20]  Wang, Y., Chen, S., Ma, T., Long, Q., Chen, L., Xu, K., et al. (2024) Promotion of Apoptosis in Melanoma Cells by Taxifolin through the PI3K/AKT Signaling Pathway: Screening of Natural Products Using WGCNA and CMAP Platforms. International Immunopharmacology, 138, Article ID: 112517.
https://doi.org/10.1016/j.intimp.2024.112517
[21]  Honarbakhsh, M., Malta, K., Ericsson, A., Holloway, C., Kim, Y., Hammerling, U., et al. (2022) Β-Carotene Improves Fecal Dysbiosis and Intestinal Dysfunctions in a Mouse Model of Vitamin a Deficiency. Biochimica et Biophysica Acta (BBA)—Molecular and Cell Biology of Lipids, 1867, Article ID: 159122.
https://doi.org/10.1016/j.bbalip.2022.159122
[22]  Montazeri, M., Fakhar, M. and Keighobadi, M. (2022) The Potential Role of the Serotonin Transporter as a Drug Target against Parasitic Infections: A Scoping Review of the Literature. Recent Advances in Anti-Infective Drug Discovery, 17, 23-33.
https://doi.org/10.2174/1574891x16666220304232301
[23]  Semwal, P., Painuli, S., Abu-Izneid, T., Rauf, A., Sharma, A., Daştan, S.D., et al. (2022) Diosgenin: An Updated Pharmacological Review and Therapeutic Perspectives. Oxidative Medicine and Cellular Longevity, 2022, Article ID: 1035441.
https://doi.org/10.1155/2022/1035441
[24]  Guo, N., Wang, X., Xu, M., Bai, J., Yu, H. and Zhang, L. (2024) PI3K/AKT Signaling Pathway: Molecular Mechanisms and Therapeutic Potential in Depression. Pharmacological Research, 206, Article ID: 107300.
https://doi.org/10.1016/j.phrs.2024.107300
[25]  Zegeye, M.M., Lindkvist, M., Fälker, K., Kumawat, A.K., Paramel, G., Grenegård, M., et al. (2018) Activation of the JAK/STAT3 and PI3K/AKT Pathways Are Crucial for IL-6 Trans-Signaling-Mediated Pro-Inflammatory Response in Human Vascular Endothelial Cells. Cell Communication and Signaling, 16, Article No. 55.
https://doi.org/10.1186/s12964-018-0268-4
[26]  Maydych, V. (2019) The Interplay between Stress, Inflammation, and Emotional Attention: Relevance for Depression. Frontiers in Neuroscience, 13, Article No. 384.
https://doi.org/10.3389/fnins.2019.00384
[27]  Bhuiyan, P., Al Mahtab, M. and Akbar, S.M.F. (2023) Unrevealing of Dysregulated Hub Genes Linked with Immune System and Inflammatory Signaling Pathways in the Pathogenesis of Irritable Bowel Syndrome by System Biology Approaches. Informatics in Medicine Unlocked, 39, Article ID: 101241.
https://doi.org/10.1016/j.imu.2023.101241
[28]  Soussi, T. and Wiman, K.G. (2015) TP53: An Oncogene in Disguise. Cell Death & Differentiation, 22, 1239-1249.
https://doi.org/10.1038/cdd.2015.53
[29]  Cooks, T., Harris, C.C. and Oren, M. (2014) Caught in the Cross Fire: P53 in Inflammation. Carcinogenesis, 35, 1680-1690.
https://doi.org/10.1093/carcin/bgu134
[30]  Brunetti, L., Francavilla, F., Leopoldo, M. and Lacivita, E. (2024) Allosteric Modulators of Serotonin Receptors: A Medicinal Chemistry Survey. Pharmaceuticals, 17, Article No. 695.
https://doi.org/10.3390/ph17060695
[31]  Layunta, E., Buey, B., Mesonero, J.E. and Latorre, E. (2021) Crosstalk between Intestinal Serotonergic System and Pattern Recognition Receptors on the Microbiota-Gut-Brain Axis. Frontiers in Endocrinology, 12, Article ID: 748254.
https://doi.org/10.3389/fendo.2021.748254
[32]  Balmus, I., Ciobica, A., Cojocariu, R., Luca, A. and Gorgan, L. (2020) Irritable Bowel Syndrome and Neurological Deficiencies: Is There a Relationship? The Possible Relevance of the Oxidative Stress Status. Medicina, 56, Article No. 175.
https://doi.org/10.3390/medicina56040175
[33]  Huang, J., Chen, L., Wu, J., Ai, D., Zhang, J., Chen, T., et al. (2022) Targeting the PI3K/AKT/mTOR Signaling Pathway in the Treatment of Human Diseases: Current Status, Trends, and Solutions. Journal of Medicinal Chemistry, 65, 16033-16061.
https://doi.org/10.1021/acs.jmedchem.2c01070
[34]  Sun, L., Xu, G., Dong, Y., Li, M., Yang, L. and Lu, W. (2020) Quercetin Protects against Lipopolysaccharide-Induced Intestinal Oxidative Stress in Broiler Chickens through Activation of Nrf2 Pathway. Molecules, 25, Article No. 1053.
https://doi.org/10.3390/molecules25051053
[35]  Jazvinšćak Jembrek, M., Oršolić, N., Karlović, D. and Peitl, V. (2023) Flavonols in Action: Targeting Oxidative Stress and Neuroinflammation in Major Depressive Disorder. International Journal of Molecular Sciences, 24, Article No. 6888.
https://doi.org/10.3390/ijms24086888
[36]  周阿成, 金黑鹰. 槲皮素对结肠癌作用及其机制的研究进展[J]. 世界华人消化杂志, 2011, 19(9): 936-939.
[37]  Aubrey, B.J., Kelly, G.L., Janic, A., Herold, M.J. and Strasser, A. (2017) How Does P53 Induce Apoptosis and How Does This Relate to P53-Mediated Tumour Suppression? Cell Death & Differentiation, 25, 104-113.
https://doi.org/10.1038/cdd.2017.169
[38]  Gite, S., Ross, R.P., Kirke, D., Guihéneuf, F., Aussant, J., Stengel, D.B., et al. (2018) Nutraceuticals to Promote Neuronal Plasticity in Response to Corticosterone-Induced Stress in Human Neuroblastoma Cells. Nutritional Neuroscience, 22, 551-568.
https://doi.org/10.1080/1028415x.2017.1418728
[39]  Li, L., Rao, J.N., Guo, X., Liu, L., Santora, R., Bass, B.L., et al. (2001) Polyamine Depletion Stabilizes P53 Resulting in Inhibition of Normal Intestinal Epithelial Cell Proliferation. American Journal of Physiology-Cell Physiology, 281, C941-C953.
https://doi.org/10.1152/ajpcell.2001.281.3.c941
[40]  Jung, D., Park, H., Byun, H., Park, Y., Kim, T., Kim, B., et al. (2010) Diosgenin Inhibits Macrophage-Derived Inflammatory Mediators through Downregulation of CK2, JNK, NF-κB and AP-1 Activation. International Immunopharmacology, 10, 1047-1054.
https://doi.org/10.1016/j.intimp.2010.06.004
[41]  Crowell, M.D. and Wessinger, S.B. (2007) 5-HT and the Brain-Gut Axis: Opportunities for Pharmacologic Intervention. Expert Opinion on Investigational Drugs, 16, 761-765.
https://doi.org/10.1517/13543784.16.6.761

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133