全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

人工智能助力下工科数学分析N课程的个性化学习研究
Research on Personalized Learning of Engineering Mathematical Analysis N Course with the Help of Artificial Intelligence

DOI: 10.12677/ae.2025.151063, PP. 427-433

Keywords: 个性化学习,知识图谱,AI助教,超星学习通
Personalized Learning
, Knowledge Graph, AI Teaching Assistant, Chaoxing Learning App

Full-Text   Cite this paper   Add to My Lib

Abstract:

本文依托超星学习通平台探讨了工科数学分析N课程学生个性化学习的方法和途径,并进行了初步应用。针对当前课程教与学的现状,本文通过建设课程知识图谱,提出了应用知识图谱和AI助教实现学生个性化学习的途径。应用表明知识图谱的关联知识点、学习资料可促进学生的自主个性学习;知识图谱运用统计的学习数据,为学生自主规划学习路径提供可能性,同时为教师提供精确的学生知识的掌握情况,便于教师进一步对学生进行个性化指导。此外,AI助教可为学生高效地提供答疑解惑和个性化学习问答。知识图谱和AI助教为学生的个性化学习提供了现实途径,也为进一步提升教学质量带来了极大可能性。
Based on the platform of Chaoxing learning, this paper discusses the methods and approaches of personalized learning for students of the N course of Engineering Mathematical Analysis, and makes a preliminary application. According to the current situation of curriculum teaching and learning, this paper proposes a way to realize students’ personalized learning by using knowledge graph and AI teaching assistant through the construction of curriculum knowledge graph. The application shows that the related knowledge points and learning materials of knowledge graph can promote the students’ independent learning. Knowledge graph can use statistical learning data to plan personalized learning paths for students, and provide teachers with accurate knowledge of students, which is convenient for teachers to further personalized guidance for students. In addition, AI teaching assistants can provide students with efficient question-and-answer and personalized learning questions. Knowledge graph and AI teaching assistant provide a practical way for students to personalized learning, and also bring great possibilities for further improving the quality of teaching.

References

[1]  国务院. 新一代人工智能发展规划(国发{2017}35号) [EB/OL/]. 中华人民共和国中央人民政府网站.
https://www.gov.cn/zhengce/content/2017-07/20/content_5211996.htm, 2017-07-20.
[2]  戴岭, 胡姣, 祝智庭. ChatGPT赋能教育数字化转型的新方略[J]. 开放教育研究, 2023, 29(4): 1-8.
[3]  周加贝, 林祎, 霍佳鑫, 蔡思雨. 智慧引领, 学以致用: 人工智能大模型在四川大学本科教学中的应用探索[J]. 数字与缩微影像, 2024(3): 1-4.
[4]  王繁, 刘永强, 周天华. 教育部高等教育司. 人工智能引领高等教育数字化创新发展[J]. 中国高等教育, 2024(Z1): 9-12.
[5]  Leo, Y., Uren, V. and Motta, E. (2006) Sem Search: A Search Engine for the Semantic Web. Lecture Notes in Computer Science, 10, 238-245.
https://doi.org/10.1007/11891451_22
[6]  Malik, A.S., Boyko, O., Atkar, N. and Young, W.F. (2001) A Comparative Study of MR Imaging Profile of Titanium Pedicle Screws. Acta Radiologica, 42, 291-293.
https://doi.org/10.1080/028418501127346846
[7]  王绵森, 马知恩. 工科数学分析基础(上、下册) [M]. 第3版. 北京: 高等教育出版社, 2014.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133