|
低碳视角下面向公铁联运的铁路物流中心选址研究
|
Abstract:
“公转铁”背景下优化铁路运输“最后一公里”配送问题十分重要,基于此引入铁路物流中心这一概念,建立了经典铁路物流中心选址模型;结合“双碳”背景充分考虑了公铁联运运输过程和铁路物流中心照明、机械作业和制冷等因素产生的碳排放成本,建立了低碳视角下的铁路物流中心选址成本改进模型,并采用一种具有记忆功能的全局逐步搜索算法——禁忌搜索算法对其求解。最后,以沪宁线周边铁路物流中心选址为例,当考虑碳排放成本时,铁路物流中心的选址由4个降至2个,物流中心改建成本的费用节省率高达39.62%;关于各部分碳排放的构成来看,公路和铁路运输碳排放的占比分别为19.08%和1.67%;此外物流中心燃料消耗的占比高达48.71%。因此,基于绿色“低碳”视角下,配送过程中应尽量减少公路运输,使用铁路运输;物流中心应尽量减少燃油消耗量,更多的使用绿色替代能源。
Under the background of “ road to railway “, it is very important to optimize the distribution of “the last kilometer” of railway transportation, so the concept of railway logistics center is introduced, the classical location selection model of railway logistics center is established; Combined with background of “carbon peak and carbon neutrality” fully consider the public transportation in transportation and railway logistics center, lighting, mechanical work and cooling etc. The cost of carbon emissions, set up under the perspective of low carbon model of railway logistics center location cost improvement and adopts a step by step with memory function in global search algorithm, tabu search algorithm for its solution. Finally, taking the site selection of railway logistics center around Shanghai-Nanjing Line as an example, when considering the carbon emission cost, the site selection of railway logistics center is reduced from 4 to 2, and the cost saving rate of logistics center reconstruction is as high as 39.62%. As for the composition of carbon emissions, road and railway transport accounted for 19.08% and 1.67% of carbon emissions respectively. In addition, the fuel consumption of logistics center accounts for 48.71%. Therefore, from the perspective of green “low-carbon”, road transport should be reduced as far as possible in the distribution process, and railway transport should be used; Logistics centers should try to reduce fuel consumption and use more green alternative energy.
[1] | 乔美华, 卞艺杰, 王惠. 物流业能源效率对碳排放的门槛效应分析[J]. 铁道运输与经济, 2017, 39(12): 100-105. |
[2] | Huang, L. and Yang, J. (2019) Location-Distribution of Cruise Ship Supply Logistics Distribution Centre Considering Time Window. Systems Science & Control Engineering, 7, 338-345. https://doi.org/10.1080/21642583.2019.1674221 |
[3] | 林殿盛, 张智勇, 王佳欣, 梁希, 石永强. 需求不确定下的低碳物流配送中心选址[J]. 控制与决策, 2020, 35(2): 492-500. |
[4] | Wang, S., Tao, F. and Shi, Y. (2018) Optimization of Location-Routing Problem for Cold Chain Logistics Considering Carbon Footprint. International Journal of Environmental Research and Public Health, 15, Article 86. https://doi.org/10.3390/ijerph15010086 |
[5] | 裴爱晖, 单立, 李涛. 基于运输成本及环境成本的物流园区选址研究[J]. 公路交通科技, 2020, 37(S1): 1-4. |
[6] | 吴芳芸, 朱小林. 基于轴辐式理论的冷链物流网络优化模型[J]. 公路交通科技, 2019, 36(6): 144-150. |
[7] | 谢海红, 刘瑛. 公铁联运配送方案优化[J]. 交通运输工程学报, 2011, 11(6): 89-93. |
[8] | Dam, K., Lukszo, Z., Ferreira, L., et al. (2007) Planning the Location of Intermodal Freight Hubs: An Agent Based Approach. 2007 IEEE International Conference on Networking, Sensing and Control, London, 15-17 April 2007, 187-192. https://doi.org/10.1109/ICNSC.2007.372774 |
[9] | 段华薇, 戴玥, 严余松. 铁路物流中心参与的公铁联运物流服务供应链协调[J]. 计算机集成制造系统, 2016, 22(6): 1590-1598. |
[10] | 王靖添, 马晓明. 中国交通运输碳排放影响因素研究——基于双层次计量模型分析[J]. 北京大学学报(自然科学版), 2021, 57(6): 1133-1142. |
[11] | De Oliveira, L.K., dos Santos, O.R., de Oliveira, R.L.M. and de Albuquerque Nóbrega, R.A. (2018) Is the Location of Warehouses Changing in the Belo Horizonte Metropolitan Area (Brazil)? A Logistics Sprawl Analysis in a Latin American Context. Urban Science, 2, Article 43. https://doi.org/10.3390/urbansci2020043 |
[12] | 陈伟建. 考虑碳排放的公铁联运货流转移方案设计[D]: [硕士学位论文]. 北京: 北京交通大学, 2015. |
[13] | 付朝晖, 刘长石. 多物流中心共同配送的车辆路径问题研究[J]. 计算机工程与应用, 2021, 57(16): 291-298. |
[14] | 蒋诗云, 严喜, 吴丽芳. 铁路货运运杂费核收管理优化探讨[J]. 铁道货运, 2020, 38(11): 49-53. |
[15] | 谢静, 林国龙, 何红弟, 周海磊. 模糊需求环境下考虑碳成本的多式联运路径优化[J]. 宁夏大学学报(自然科学版), 2017, 38(2): 173-179. |
[16] | 李悦. 基于禁忌搜索算法的双区型仓库货位分配与拣货路径协同优化[D]: [硕士学位论文]. 北京: 北京交通大学, 2020. |
[17] | 康雁, 王海宁, 陶柳, 杨海潇, 杨学昆, 王飞, 李浩. 混合改进的花授粉算法与灰狼算法用于特征选择[J]. 计算机科学, 2022, 49(S1): 125-132. |