|
气动阀性能测试控制系统设计与应用研究
|
Abstract:
为满足工厂气动阀自动化测试需求,本研究设计了一种基于PLC与触摸屏的五通道气动阀性能测试控制系统。该系统采用RS-232通信,利用接近开关传感器、温度传感器、压力传感器、电磁阀等组成测试系统执行气动阀性能测试。并在五通道的基础上进行十通道系统扩展,采用基于RS-485通讯接口的Modbus-RTU协议实现通信,触摸屏作为主站,PLC控制器作为从站。经Gx Works2、FStudio 2软件仿真测试及实验结果表明,该控制系统能够实现对气动阀动作时间、密封性、寿命性等参数的测试,系统稳定测试可执行最大开关频率为50 Hz,满足气动阀性能的测试需求。
In order to meet the requirements of automatic test of pneumatic valves in factories, a five-channel pneumatic valve performance test control system based on PLC and touch screen is designed in this paper. The system uses RS-232 communication, and uses proximity switch sensor, temperature sensor, pressure sensor, solenoid valve and other test systems to test the performance of pneumatic valves. Based on the five-channel system, the ten-channel system is extended, and the Modbus-RTU protocol based on RS-485 communication interface is adopted to realize communication, with the touch screen as the master station and the PLC controller as the slave station. The simulation test and experiment results of Gx Works2 and FStudio 2 software show that the control system can realize the test of parameters such as operation time, sealing and life of the pneumatic valve, and the maximum switching frequency of the system stability test can be performed at 50 Hz, which meets the test requirements of the performance of the pneumatic valve.
[1] | 耿延龙, 徐世许, 李杰. 基于Modbus-RTU协议的包装箱检重管理系统设计[J]. 制造业自动化, 2020, 42(7): 6-9+14. |
[2] | 张亚杰, 张鹏. 气动阀诊断在核电厂调试的实践[J]. 阀门, 2024(9): 1159-1164. |
[3] | 杨充, 左晨, 李健, 等. 油气田用阀门气动执行器常见故障诊断及维修[J]. 科学技术创新, 2021(35): 10-12. |
[4] | 陈智勇. 油气田用阀门气动执行器常见故障诊断及维修[J]. 中国石油和化工标准与质量, 2020, 40(14): 41-42. |
[5] | 李天. 基于理想气体状态方程的气动执行器气密性检测分析[J]. 中国机械, 2023(36): 78-81. |
[6] | 姜国微, 王利敏, 陈蒙南. 基于理想气体状态方程的气动执行机构气密性检测方法[J]. 阀门, 2023(5): 564-566. |
[7] | 孙良环. 奇台电厂除灰系统气动阀门的控制系统分析[J]. 液压气动与密封, 2015, 35(2): 18-20. |
[8] | 王贺彬, 白锐, 吕永津, 等. 基于PLC与触摸屏的空压站自动监控系统设计[J]. 制造业自动化, 2023, 45(10): 125-128. |
[9] | 王楠. 基于Modbus通信的空压机PLC联控系统设计[J]. 设备管理与维修, 2023(21): 18-20. |
[10] | 原通文, 姜川, 孟晖, 等. 基于S7-1200和双PLC通讯的悬挂输送系统的设计与实现[J]. 制造业自动化, 2019, 41(6): 123-125. |